MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2t Structured version   Visualization version   GIF version

Theorem copsex2t 5482
Description: Closed theorem form of copsex2g 5483. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
copsex2t ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2t
StepHypRef Expression
1 nfa1 2140 . . 3 𝑥𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2 nfe1 2139 . . . 4 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
3 nfv 1909 . . . 4 𝑥𝜓
42, 3nfbi 1898 . . 3 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
5 nfa2 2162 . . . 4 𝑦𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
6 nfe1 2139 . . . . . 6 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nfex 2309 . . . . 5 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
8 nfv 1909 . . . . 5 𝑦𝜓
97, 8nfbi 1898 . . . 4 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
10 opeq12 4867 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
11 copsexgw 5480 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1211eqcoms 2732 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1310, 12syl 17 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1413adantl 481 . . . . . 6 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
15 2sp 2171 . . . . . . 7 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)))
1615imp 406 . . . . . 6 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑𝜓))
1714, 16bitr3d 281 . . . . 5 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
1817ex 412 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
195, 9, 18exlimd 2203 . . 3 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
201, 4, 19exlimd 2203 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
21 elisset 2807 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
22 elisset 2807 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
2321, 22anim12i 612 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
24 exdistrv 1951 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
2523, 24sylibr 233 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
2620, 25impel 505 1 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  cop 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627
This theorem is referenced by:  opelopabt  5522
  Copyright terms: Public domain W3C validator