MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2t Structured version   Visualization version   GIF version

Theorem copsex2t 5406
Description: Closed theorem form of copsex2g 5407. (Contributed by NM, 17-Feb-2013.)
Assertion
Ref Expression
copsex2t ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem copsex2t
StepHypRef Expression
1 nfa1 2148 . . 3 𝑥𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
2 nfe1 2147 . . . 4 𝑥𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
3 nfv 1917 . . . 4 𝑥𝜓
42, 3nfbi 1906 . . 3 𝑥(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
5 nfa2 2170 . . . 4 𝑦𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
6 nfe1 2147 . . . . . 6 𝑦𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nfex 2318 . . . . 5 𝑦𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
8 nfv 1917 . . . . 5 𝑦𝜓
97, 8nfbi 1906 . . . 4 𝑦(∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)
10 opeq12 4806 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
11 copsexgw 5404 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1211eqcoms 2746 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1310, 12syl 17 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
1413adantl 482 . . . . . 6 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑 ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
15 2sp 2179 . . . . . . 7 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)))
1615imp 407 . . . . . 6 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜑𝜓))
1714, 16bitr3d 280 . . . . 5 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
1817ex 413 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
195, 9, 18exlimd 2211 . . 3 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
201, 4, 19exlimd 2211 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) → (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓)))
21 elisset 2820 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
22 elisset 2820 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
2321, 22anim12i 613 . . 3 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
24 exdistrv 1959 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
2523, 24sylibr 233 . 2 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
2620, 25impel 506 1 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  opelopabt  5445
  Copyright terms: Public domain W3C validator