Step | Hyp | Ref
| Expression |
1 | | mbfresfi.1 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
2 | | mbfresfi.3 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) |
3 | | mbfresfi.4 |
. . 3
⊢ (𝜑 → ∪ 𝑆 =
𝐴) |
4 | | mbfresfi.2 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Fin) |
5 | 4 | uniexd 7573 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑆
∈ V) |
6 | 3, 5 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
7 | | fex 7084 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ V) → 𝐹 ∈ V) |
8 | 7 | ex 412 |
. . . . . 6
⊢ (𝐹:𝐴⟶ℂ → (𝐴 ∈ V → 𝐹 ∈ V)) |
9 | 1, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ V → 𝐹 ∈ V)) |
10 | 6, 9 | jcai 516 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐹 ∈ V)) |
11 | | feq2 6566 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → (𝑓:𝑎⟶ℂ ↔ 𝑓:𝐴⟶ℂ)) |
12 | 11 | anbi1d 629 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn))) |
13 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (∪ 𝑆 = 𝑎 ↔ ∪ 𝑆 = 𝐴)) |
14 | 12, 13 | anbi12d 630 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) ↔ ((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴))) |
15 | 14 | imbi1d 341 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝑓 ∈
MblFn))) |
16 | 15 | imbi2d 340 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝑓 ∈
MblFn)))) |
17 | | feq1 6565 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓:𝐴⟶ℂ ↔ 𝐹:𝐴⟶ℂ)) |
18 | | reseq1 5874 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝑓 ↾ 𝑠) = (𝐹 ↾ 𝑠)) |
19 | 18 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → ((𝑓 ↾ 𝑠) ∈ MblFn ↔ (𝐹 ↾ 𝑠) ∈ MblFn)) |
20 | 19 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn)) |
21 | 17, 20 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn))) |
22 | 21 | anbi1d 629 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) ↔ ((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴))) |
23 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn)) |
24 | 22, 23 | imbi12d 344 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝑓 ∈ MblFn) ↔ (((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝐹 ∈ MblFn))) |
25 | 24 | imbi2d 340 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝐹 ∈ MblFn)))) |
26 | | rzal 4436 |
. . . . . . . . . . . 12
⊢ (𝑟 = ∅ → ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) |
27 | 26 | biantrud 531 |
. . . . . . . . . . 11
⊢ (𝑟 = ∅ → (𝑓:𝑎⟶ℂ ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn))) |
28 | 27 | bicomd 222 |
. . . . . . . . . 10
⊢ (𝑟 = ∅ → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ 𝑓:𝑎⟶ℂ)) |
29 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ (𝑟 = ∅ → ∪ 𝑟 =
∪ ∅) |
30 | | uni0 4866 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
31 | 29, 30 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑟 = ∅ → ∪ 𝑟 =
∅) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑟 = ∅ → (∪ 𝑟 =
𝑎 ↔ ∅ = 𝑎)) |
33 | 28, 32 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑟 = ∅ → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) ↔ (𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎))) |
34 | 33 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑟 = ∅ → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn))) |
35 | 34 | 2albidv 1927 |
. . . . . . 7
⊢ (𝑟 = ∅ → (∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑓∀𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn))) |
36 | | raleq 3333 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑡 → (∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn)) |
37 | 36 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn))) |
38 | | unieq 4847 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑡 → ∪ 𝑟 = ∪
𝑡) |
39 | 38 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → (∪ 𝑟 = 𝑎 ↔ ∪ 𝑡 = 𝑎)) |
40 | 37, 39 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑡 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎))) |
41 | 40 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝑟 = 𝑡 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎) → 𝑓 ∈
MblFn))) |
42 | 41 | 2albidv 1927 |
. . . . . . . 8
⊢ (𝑟 = 𝑡 → (∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎) → 𝑓 ∈
MblFn))) |
43 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → 𝑓 = 𝑔) |
44 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → 𝑎 = 𝑏) |
45 | 43, 44 | feq12d 6572 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (𝑓:𝑎⟶ℂ ↔ 𝑔:𝑏⟶ℂ)) |
46 | | reseq1 5874 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑠) = (𝑔 ↾ 𝑠)) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (𝑓 ↾ 𝑠) = (𝑔 ↾ 𝑠)) |
48 | 47 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → ((𝑓 ↾ 𝑠) ∈ MblFn ↔ (𝑔 ↾ 𝑠) ∈ MblFn)) |
49 | 48 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn)) |
50 | 45, 49 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn))) |
51 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏)) |
52 | 51 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (∪ 𝑡 = 𝑎 ↔ ∪ 𝑡 = 𝑏)) |
53 | 50, 52 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏))) |
54 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn)) |
55 | 54 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn)) |
56 | 53, 55 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑓 = 𝑔 ∧ 𝑎 = 𝑏) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈
MblFn))) |
57 | 56 | cbval2vw 2044 |
. . . . . . . 8
⊢
(∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn)) |
58 | 42, 57 | bitrdi 286 |
. . . . . . 7
⊢ (𝑟 = 𝑡 → (∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈
MblFn))) |
59 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → (∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn)) |
60 | 59 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn))) |
61 | | unieq 4847 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → ∪ 𝑟 = ∪
(𝑡 ∪ {ℎ})) |
62 | 61 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → (∪ 𝑟 = 𝑎 ↔ ∪ (𝑡 ∪ {ℎ}) = 𝑎)) |
63 | 60, 62 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎))) |
64 | 63 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → 𝑓 ∈ MblFn))) |
65 | 64 | 2albidv 1927 |
. . . . . . 7
⊢ (𝑟 = (𝑡 ∪ {ℎ}) → (∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → 𝑓 ∈ MblFn))) |
66 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → (∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn)) |
67 | 66 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑆 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn))) |
68 | | unieq 4847 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑆 → ∪ 𝑟 = ∪
𝑆) |
69 | 68 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑆 → (∪ 𝑟 = 𝑎 ↔ ∪ 𝑆 = 𝑎)) |
70 | 67, 69 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑟 = 𝑆 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎))) |
71 | 70 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑟 = 𝑆 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈
MblFn))) |
72 | 71 | 2albidv 1927 |
. . . . . . 7
⊢ (𝑟 = 𝑆 → (∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑟 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑟 =
𝑎) → 𝑓 ∈ MblFn) ↔
∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈
MblFn))) |
73 | | frel 6589 |
. . . . . . . . . 10
⊢ (𝑓:𝑎⟶ℂ → Rel 𝑓) |
74 | 73 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → Rel 𝑓) |
75 | | fdm 6593 |
. . . . . . . . . 10
⊢ (𝑓:𝑎⟶ℂ → dom 𝑓 = 𝑎) |
76 | | eqcom 2745 |
. . . . . . . . . . 11
⊢ (∅
= 𝑎 ↔ 𝑎 = ∅) |
77 | 76 | biimpi 215 |
. . . . . . . . . 10
⊢ (∅
= 𝑎 → 𝑎 = ∅) |
78 | 75, 77 | sylan9eq 2799 |
. . . . . . . . 9
⊢ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → dom 𝑓 = ∅) |
79 | | reldm0 5826 |
. . . . . . . . . . 11
⊢ (Rel
𝑓 → (𝑓 = ∅ ↔ dom 𝑓 = ∅)) |
80 | 79 | biimpar 477 |
. . . . . . . . . 10
⊢ ((Rel
𝑓 ∧ dom 𝑓 = ∅) → 𝑓 = ∅) |
81 | | mbf0 24703 |
. . . . . . . . . 10
⊢ ∅
∈ MblFn |
82 | 80, 81 | eqeltrdi 2847 |
. . . . . . . . 9
⊢ ((Rel
𝑓 ∧ dom 𝑓 = ∅) → 𝑓 ∈ MblFn) |
83 | 74, 78, 82 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn) |
84 | 83 | gen2 1800 |
. . . . . . 7
⊢
∀𝑓∀𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn) |
85 | | ref 14751 |
. . . . . . . . . . . . . . 15
⊢
ℜ:ℂ⟶ℝ |
86 | | fco 6608 |
. . . . . . . . . . . . . . 15
⊢
((ℜ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℝ) |
87 | 85, 86 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℝ) |
88 | 87 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → (ℜ ∘ 𝑓):𝑎⟶ℝ) |
89 | 88 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (ℜ ∘ 𝑓):𝑎⟶ℝ) |
90 | | recncf 23971 |
. . . . . . . . . . . . . . . . 17
⊢ ℜ
∈ (ℂ–cn→ℝ) |
91 | 90 | elexi 3441 |
. . . . . . . . . . . . . . . 16
⊢ ℜ
∈ V |
92 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
93 | 91, 92 | coex 7751 |
. . . . . . . . . . . . . . 15
⊢ (ℜ
∘ 𝑓) ∈
V |
94 | 93 | resex 5928 |
. . . . . . . . . . . . . 14
⊢ ((ℜ
∘ 𝑓) ↾ ∪ 𝑡)
∈ V |
95 | | vuniex 7570 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑡
∈ V |
96 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = ∪
𝑡 ↔ ∪ 𝑡 =
𝑏) |
97 | 96 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = ∪
𝑡 → ∪ 𝑡 =
𝑏) |
98 | 97 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ∪ 𝑡 = 𝑏) |
99 | 98 | biantrud 531 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏))) |
100 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℂ =
ℂ |
101 | | feq123 6574 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡
∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ)) |
102 | 100, 101 | mp3an3 1448 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (𝑔:𝑏⟶ℂ ↔ ((ℜ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ)) |
103 | | reseq1 5874 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
→ (𝑔 ↾ 𝑠) = (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠)) |
104 | 103 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
→ ((𝑔 ↾ 𝑠) ∈ MblFn ↔ (((ℜ
∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn)) |
105 | 104 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔 ↾ 𝑠) ∈ MblFn ↔ (((ℜ
∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn)) |
106 | 105 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (∀𝑠 ∈
𝑡 (𝑔 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn)) |
107 | 102, 106 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ↔ (((ℜ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn))) |
108 | 99, 107 | bitr3d 280 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) ↔ (((ℜ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn))) |
109 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
→ (𝑔 ∈ MblFn
↔ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (𝑔 ∈ MblFn
↔ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
111 | 108, 110 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 = ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℜ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn))) |
112 | 111 | spc2gv 3529 |
. . . . . . . . . . . . . 14
⊢
((((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ∈ V ∧ ∪ 𝑡
∈ V) → (∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) → ((((ℜ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn))) |
113 | 94, 95, 112 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
(∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) → ((((ℜ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
114 | | ax-resscn 10859 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℂ |
115 | | fss 6601 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) →
ℜ:ℂ⟶ℂ) |
116 | 85, 114, 115 | mp2an 688 |
. . . . . . . . . . . . . . . . 17
⊢
ℜ:ℂ⟶ℂ |
117 | | fco 6608 |
. . . . . . . . . . . . . . . . 17
⊢
((ℜ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℂ) |
118 | 116, 117 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℂ) |
119 | | ssun1 4102 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑡 ⊆ (𝑡 ∪ {ℎ}) |
120 | 119 | unissi 4845 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑡
⊆ ∪ (𝑡 ∪ {ℎ}) |
121 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ (𝑡
∪ {ℎ}) = 𝑎 → ∪ (𝑡
∪ {ℎ}) = 𝑎) |
122 | 120, 121 | sseqtrid 3969 |
. . . . . . . . . . . . . . . 16
⊢ (∪ (𝑡
∪ {ℎ}) = 𝑎 → ∪ 𝑡
⊆ 𝑎) |
123 | | fssres 6624 |
. . . . . . . . . . . . . . . 16
⊢ (((ℜ
∘ 𝑓):𝑎⟶ℂ ∧ ∪ 𝑡
⊆ 𝑎) → ((ℜ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
124 | 118, 122,
123 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
125 | 124 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
126 | | elssuni 4868 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ 𝑡 → 𝑟 ⊆ ∪ 𝑡) |
127 | 126 | resabs1d 5911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ 𝑡 → (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = ((ℜ ∘ 𝑓) ↾ 𝑟)) |
128 | | resco 6143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℜ
∘ 𝑓) ↾ 𝑟) = (ℜ ∘ (𝑓 ↾ 𝑟)) |
129 | 127, 128 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ 𝑡 → (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓 ↾ 𝑟))) |
130 | 129 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓 ↾ 𝑟))) |
131 | | elun1 4106 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟 ∈ 𝑡 → 𝑟 ∈ (𝑡 ∪ {ℎ})) |
132 | | reseq2 5875 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑟 → (𝑓 ↾ 𝑠) = (𝑓 ↾ 𝑟)) |
133 | 132 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = 𝑟 → ((𝑓 ↾ 𝑠) ∈ MblFn ↔ (𝑓 ↾ 𝑟) ∈ MblFn)) |
134 | 133 | rspccva 3551 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑠 ∈
(𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn ∧ 𝑟 ∈ (𝑡 ∪ {ℎ})) → (𝑓 ↾ 𝑟) ∈ MblFn) |
135 | 131, 134 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑠 ∈
(𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn ∧ 𝑟 ∈ 𝑡) → (𝑓 ↾ 𝑟) ∈ MblFn) |
136 | 135 | adantll 710 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (𝑓 ↾ 𝑟) ∈ MblFn) |
137 | | fresin 6627 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝑎⟶ℂ → (𝑓 ↾ 𝑟):(𝑎 ∩ 𝑟)⟶ℂ) |
138 | | ismbfcn 24698 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ↾ 𝑟):(𝑎 ∩ 𝑟)⟶ℂ → ((𝑓 ↾ 𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn))) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:𝑎⟶ℂ → ((𝑓 ↾ 𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn))) |
140 | 139 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:𝑎⟶ℂ → ((𝑓 ↾ 𝑟) ∈ MblFn → ((ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn))) |
141 | 140 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → ((𝑓 ↾ 𝑟) ∈ MblFn → ((ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn))) |
142 | 136, 141 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → ((ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn)) |
143 | 142 | simpld 494 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (ℜ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn) |
144 | 130, 143 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) ∈ MblFn) |
145 | 144 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ∀𝑟 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) ∈ MblFn) |
146 | | reseq2 5875 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠)) |
147 | 146 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → ((((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn)) |
148 | 147 | cbvralvw 3372 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑟 ∈
𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑟) ∈ MblFn
↔ ∀𝑠 ∈
𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn) |
149 | 145, 148 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn) |
150 | 149 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn) |
151 | | pm2.27 42 |
. . . . . . . . . . . . . 14
⊢
((((ℜ ∘ 𝑓) ↾ ∪ 𝑡):∪
𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ (((((ℜ ∘ 𝑓) ↾ ∪ 𝑡):∪
𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∈ MblFn)) |
152 | 125, 150,
151 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → (((((ℜ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℜ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∈ MblFn)) |
153 | 113, 152 | mpan9 506 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ∪ 𝑡)
∈ MblFn) |
154 | | vsnid 4595 |
. . . . . . . . . . . . . . 15
⊢ ℎ ∈ {ℎ} |
155 | | elun2 4107 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ {ℎ} → ℎ ∈ (𝑡 ∪ {ℎ})) |
156 | | reseq2 5875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = ℎ → (𝑓 ↾ 𝑠) = (𝑓 ↾ ℎ)) |
157 | 156 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = ℎ → ((𝑓 ↾ 𝑠) ∈ MblFn ↔ (𝑓 ↾ ℎ) ∈ MblFn)) |
158 | 157 | rspcv 3547 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ (𝑡 ∪ {ℎ}) → (∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn → (𝑓 ↾ ℎ) ∈ MblFn)) |
159 | 154, 155,
158 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢
(∀𝑠 ∈
(𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn → (𝑓 ↾ ℎ) ∈ MblFn) |
160 | | resco 6143 |
. . . . . . . . . . . . . . 15
⊢ ((ℜ
∘ 𝑓) ↾ ℎ) = (ℜ ∘ (𝑓 ↾ ℎ)) |
161 | | fresin 6627 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:𝑎⟶ℂ → (𝑓 ↾ ℎ):(𝑎 ∩ ℎ)⟶ℂ) |
162 | | ismbfcn 24698 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ↾ ℎ):(𝑎 ∩ ℎ)⟶ℂ → ((𝑓 ↾ ℎ) ∈ MblFn ↔ ((ℜ ∘ (𝑓 ↾ ℎ)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ ℎ)) ∈ MblFn))) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝑎⟶ℂ → ((𝑓 ↾ ℎ) ∈ MblFn ↔ ((ℜ ∘ (𝑓 ↾ ℎ)) ∈ MblFn ∧ (ℑ ∘ (𝑓 ↾ ℎ)) ∈ MblFn))) |
164 | 163 | simprbda 498 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ (𝑓 ↾ ℎ) ∈ MblFn) → (ℜ ∘ (𝑓 ↾ ℎ)) ∈ MblFn) |
165 | 160, 164 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑎⟶ℂ ∧ (𝑓 ↾ ℎ) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ℎ) ∈ MblFn) |
166 | 159, 165 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ℎ) ∈ MblFn) |
167 | 166 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ℎ) ∈ MblFn) |
168 | | uniun 4861 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝑡
∪ {ℎ}) = (∪ 𝑡
∪ ∪ {ℎ}) |
169 | | vex 3426 |
. . . . . . . . . . . . . . . . 17
⊢ ℎ ∈ V |
170 | 169 | unisn 4858 |
. . . . . . . . . . . . . . . 16
⊢ ∪ {ℎ} =
ℎ |
171 | 170 | uneq2i 4090 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑡
∪ ∪ {ℎ}) = (∪ 𝑡 ∪ ℎ) |
172 | 168, 171 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ ∪ (𝑡
∪ {ℎ}) = (∪ 𝑡
∪ ℎ) |
173 | 172, 121 | eqtr3id 2793 |
. . . . . . . . . . . . 13
⊢ (∪ (𝑡
∪ {ℎ}) = 𝑎 → (∪ 𝑡
∪ ℎ) = 𝑎) |
174 | 173 | ad2antll 725 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (∪ 𝑡
∪ ℎ) = 𝑎) |
175 | 89, 153, 167, 174 | mbfres2 24714 |
. . . . . . . . . . 11
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (ℜ ∘ 𝑓) ∈ MblFn) |
176 | | imf 14752 |
. . . . . . . . . . . . . . 15
⊢
ℑ:ℂ⟶ℝ |
177 | | fco 6608 |
. . . . . . . . . . . . . . 15
⊢
((ℑ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘
𝑓):𝑎⟶ℝ) |
178 | 176, 177 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℝ) |
179 | 178 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → (ℑ ∘ 𝑓):𝑎⟶ℝ) |
180 | 179 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (ℑ ∘ 𝑓):𝑎⟶ℝ) |
181 | | imcncf 23972 |
. . . . . . . . . . . . . . . . 17
⊢ ℑ
∈ (ℂ–cn→ℝ) |
182 | 181 | elexi 3441 |
. . . . . . . . . . . . . . . 16
⊢ ℑ
∈ V |
183 | 182, 92 | coex 7751 |
. . . . . . . . . . . . . . 15
⊢ (ℑ
∘ 𝑓) ∈
V |
184 | 183 | resex 5928 |
. . . . . . . . . . . . . 14
⊢ ((ℑ
∘ 𝑓) ↾ ∪ 𝑡)
∈ V |
185 | 97 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ∪ 𝑡 = 𝑏) |
186 | 185 | biantrud 531 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏))) |
187 | | feq123 6574 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡
∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ)) |
188 | 100, 187 | mp3an3 1448 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (𝑔:𝑏⟶ℂ ↔ ((ℑ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ)) |
189 | | reseq1 5874 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
→ (𝑔 ↾ 𝑠) = (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠)) |
190 | 189 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
→ ((𝑔 ↾ 𝑠) ∈ MblFn ↔ (((ℑ
∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn)) |
191 | 190 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔 ↾ 𝑠) ∈ MblFn ↔ (((ℑ
∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn)) |
192 | 191 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (∀𝑠 ∈
𝑡 (𝑔 ↾ 𝑠) ∈ MblFn ↔ ∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn)) |
193 | 188, 192 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ↔ (((ℑ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn))) |
194 | 186, 193 | bitr3d 280 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) ↔ (((ℑ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn))) |
195 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
→ (𝑔 ∈ MblFn
↔ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
196 | 195 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ (𝑔 ∈ MblFn
↔ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
197 | 194, 196 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 = ((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
∧ 𝑏 = ∪ 𝑡)
→ ((((𝑔:𝑏⟶ℂ ∧
∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ↔
((((ℑ ∘ 𝑓)
↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn))) |
198 | 197 | spc2gv 3529 |
. . . . . . . . . . . . . 14
⊢
((((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ∈ V ∧ ∪ 𝑡
∈ V) → (∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) →
((((ℑ ∘ 𝑓)
↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn))) |
199 | 184, 95, 198 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
(∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) →
((((ℑ ∘ 𝑓)
↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn)) |
200 | | fss 6601 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) →
ℑ:ℂ⟶ℂ) |
201 | 176, 114,
200 | mp2an 688 |
. . . . . . . . . . . . . . . . 17
⊢
ℑ:ℂ⟶ℂ |
202 | | fco 6608 |
. . . . . . . . . . . . . . . . 17
⊢
((ℑ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘
𝑓):𝑎⟶ℂ) |
203 | 201, 202 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℂ) |
204 | | fssres 6624 |
. . . . . . . . . . . . . . . 16
⊢
(((ℑ ∘ 𝑓):𝑎⟶ℂ ∧ ∪ 𝑡
⊆ 𝑎) → ((ℑ
∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
205 | 203, 122,
204 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
206 | 205 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ) |
207 | 126 | resabs1d 5911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 ∈ 𝑡 → (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = ((ℑ ∘ 𝑓) ↾ 𝑟)) |
208 | | resco 6143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℑ
∘ 𝑓) ↾ 𝑟) = (ℑ ∘ (𝑓 ↾ 𝑟)) |
209 | 207, 208 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ 𝑡 → (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓 ↾ 𝑟))) |
210 | 209 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑟) = (ℑ
∘ (𝑓 ↾ 𝑟))) |
211 | 142 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (ℑ ∘ (𝑓 ↾ 𝑟)) ∈ MblFn) |
212 | 210, 211 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ 𝑟 ∈ 𝑡) → (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑟) ∈
MblFn) |
213 | 212 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ∀𝑟 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) ∈ MblFn) |
214 | | reseq2 5875 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑟) = (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠)) |
215 | 214 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → ((((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑟) ∈ MblFn
↔ (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn)) |
216 | 215 | cbvralvw 3372 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑟 ∈
𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑟) ∈ MblFn
↔ ∀𝑠 ∈
𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈
MblFn) |
217 | 213, 216 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn) |
218 | 217 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → ∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡) ↾ 𝑠) ∈ MblFn) |
219 | | pm2.27 42 |
. . . . . . . . . . . . . 14
⊢
((((ℑ ∘ 𝑓) ↾ ∪ 𝑡):∪
𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ (((((ℑ ∘ 𝑓) ↾ ∪ 𝑡):∪
𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn) → ((ℑ ∘
𝑓) ↾ ∪ 𝑡)
∈ MblFn)) |
220 | 206, 218,
219 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → (((((ℑ ∘
𝑓) ↾ ∪ 𝑡):∪ 𝑡⟶ℂ ∧
∀𝑠 ∈ 𝑡 (((ℑ ∘ 𝑓) ↾ ∪ 𝑡)
↾ 𝑠) ∈ MblFn)
→ ((ℑ ∘ 𝑓)
↾ ∪ 𝑡) ∈ MblFn) → ((ℑ ∘
𝑓) ↾ ∪ 𝑡)
∈ MblFn)) |
221 | 199, 220 | mpan9 506 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → ((ℑ ∘
𝑓) ↾ ∪ 𝑡)
∈ MblFn) |
222 | | resco 6143 |
. . . . . . . . . . . . . . 15
⊢ ((ℑ
∘ 𝑓) ↾ ℎ) = (ℑ ∘ (𝑓 ↾ ℎ)) |
223 | 163 | simplbda 499 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:𝑎⟶ℂ ∧ (𝑓 ↾ ℎ) ∈ MblFn) → (ℑ ∘ (𝑓 ↾ ℎ)) ∈ MblFn) |
224 | 222, 223 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑎⟶ℂ ∧ (𝑓 ↾ ℎ) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ℎ) ∈ MblFn) |
225 | 159, 224 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → ((ℑ ∘
𝑓) ↾ ℎ) ∈ MblFn) |
226 | 225 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → ((ℑ ∘
𝑓) ↾ ℎ) ∈ MblFn) |
227 | 180, 221,
226, 174 | mbfres2 24714 |
. . . . . . . . . . 11
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (ℑ ∘ 𝑓) ∈ MblFn) |
228 | | ismbfcn 24698 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑎⟶ℂ → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ
∘ 𝑓) ∈
MblFn))) |
229 | 228 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ
∘ 𝑓) ∈
MblFn))) |
230 | 229 | ad2antrl 724 |
. . . . . . . . . . 11
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ
∘ 𝑓) ∈
MblFn))) |
231 | 175, 227,
230 | mpbir2and 709 |
. . . . . . . . . 10
⊢
((∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎)) → 𝑓 ∈ MblFn) |
232 | 231 | ex 412 |
. . . . . . . . 9
⊢
(∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → 𝑓 ∈ MblFn)) |
233 | 232 | alrimivv 1932 |
. . . . . . . 8
⊢
(∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) →
∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → 𝑓 ∈ MblFn)) |
234 | 233 | a1i 11 |
. . . . . . 7
⊢ (𝑡 ∈ Fin →
(∀𝑔∀𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠 ∈ 𝑡 (𝑔 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑡 =
𝑏) → 𝑔 ∈ MblFn) →
∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {ℎ})(𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ (𝑡
∪ {ℎ}) = 𝑎) → 𝑓 ∈ MblFn))) |
235 | 35, 58, 65, 72, 84, 234 | findcard2 8909 |
. . . . . 6
⊢ (𝑆 ∈ Fin → ∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn)) |
236 | | 2sp 2181 |
. . . . . 6
⊢
(∀𝑓∀𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn)) |
237 | 4, 235, 236 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝑓 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝑎) → 𝑓 ∈ MblFn)) |
238 | 16, 25, 237 | vtocl2g 3500 |
. . . 4
⊢ ((𝐴 ∈ V ∧ 𝐹 ∈ V) → (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝐹 ∈ MblFn))) |
239 | 10, 238 | mpcom 38 |
. . 3
⊢ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) ∧ ∪ 𝑆 =
𝐴) → 𝐹 ∈ MblFn)) |
240 | 3, 239 | mpan2d 690 |
. 2
⊢ (𝜑 → ((𝐹:𝐴⟶ℂ ∧ ∀𝑠 ∈ 𝑆 (𝐹 ↾ 𝑠) ∈ MblFn) → 𝐹 ∈ MblFn)) |
241 | 1, 2, 240 | mp2and 695 |
1
⊢ (𝜑 → 𝐹 ∈ MblFn) |