Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfresfi Structured version   Visualization version   GIF version

Theorem mbfresfi 37667
Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
Hypotheses
Ref Expression
mbfresfi.1 (𝜑𝐹:𝐴⟶ℂ)
mbfresfi.2 (𝜑𝑆 ∈ Fin)
mbfresfi.3 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
mbfresfi.4 (𝜑 𝑆 = 𝐴)
Assertion
Ref Expression
mbfresfi (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝜑,𝑠   𝐴,𝑠   𝐹,𝑠   𝑆,𝑠

Proof of Theorem mbfresfi
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfresfi.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 mbfresfi.3 . 2 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
3 mbfresfi.4 . . 3 (𝜑 𝑆 = 𝐴)
4 mbfresfi.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
54uniexd 7721 . . . . . 6 (𝜑 𝑆 ∈ V)
63, 5eqeltrrd 2830 . . . . 5 (𝜑𝐴 ∈ V)
7 fex 7203 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ V) → 𝐹 ∈ V)
87ex 412 . . . . . 6 (𝐹:𝐴⟶ℂ → (𝐴 ∈ V → 𝐹 ∈ V))
91, 8syl 17 . . . . 5 (𝜑 → (𝐴 ∈ V → 𝐹 ∈ V))
106, 9jcai 516 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐹 ∈ V))
11 feq2 6670 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓:𝑎⟶ℂ ↔ 𝑓:𝐴⟶ℂ))
1211anbi1d 631 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
13 eqeq2 2742 . . . . . . . 8 (𝑎 = 𝐴 → ( 𝑆 = 𝑎 𝑆 = 𝐴))
1412, 13anbi12d 632 . . . . . . 7 (𝑎 = 𝐴 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) ↔ ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
1514imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)))
1615imbi2d 340 . . . . 5 (𝑎 = 𝐴 → ((𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn))))
17 feq1 6669 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝐴⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
18 reseq1 5947 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
1918eleq1d 2814 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑠) ∈ MblFn ↔ (𝐹𝑠) ∈ MblFn))
2019ralbidv 3157 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑠𝑆 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn))
2117, 20anbi12d 632 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)))
2221anbi1d 631 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) ↔ ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
23 eleq1 2817 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn))
2422, 23imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn) ↔ (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
2524imbi2d 340 . . . . 5 (𝑓 = 𝐹 → ((𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))))
26 rzal 4475 . . . . . . . . . . . 12 (𝑟 = ∅ → ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)
2726biantrud 531 . . . . . . . . . . 11 (𝑟 = ∅ → (𝑓:𝑎⟶ℂ ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)))
2827bicomd 223 . . . . . . . . . 10 (𝑟 = ∅ → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ 𝑓:𝑎⟶ℂ))
29 unieq 4885 . . . . . . . . . . . 12 (𝑟 = ∅ → 𝑟 = ∅)
30 uni0 4902 . . . . . . . . . . . 12 ∅ = ∅
3129, 30eqtrdi 2781 . . . . . . . . . . 11 (𝑟 = ∅ → 𝑟 = ∅)
3231eqeq1d 2732 . . . . . . . . . 10 (𝑟 = ∅ → ( 𝑟 = 𝑎 ↔ ∅ = 𝑎))
3328, 32anbi12d 632 . . . . . . . . 9 (𝑟 = ∅ → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ (𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎)))
3433imbi1d 341 . . . . . . . 8 (𝑟 = ∅ → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
35342albidv 1923 . . . . . . 7 (𝑟 = ∅ → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
36 raleq 3298 . . . . . . . . . . . 12 (𝑟 = 𝑡 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn))
3736anbi2d 630 . . . . . . . . . . 11 (𝑟 = 𝑡 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn)))
38 unieq 4885 . . . . . . . . . . . 12 (𝑟 = 𝑡 𝑟 = 𝑡)
3938eqeq1d 2732 . . . . . . . . . . 11 (𝑟 = 𝑡 → ( 𝑟 = 𝑎 𝑡 = 𝑎))
4037, 39anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑡 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎)))
4140imbi1d 341 . . . . . . . . 9 (𝑟 = 𝑡 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
42412albidv 1923 . . . . . . . 8 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
43 simpl 482 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑓 = 𝑔)
44 simpr 484 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑎 = 𝑏)
4543, 44feq12d 6679 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓:𝑎⟶ℂ ↔ 𝑔:𝑏⟶ℂ))
46 reseq1 5947 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑠) = (𝑔𝑠))
4746adantr 480 . . . . . . . . . . . . . 14 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓𝑠) = (𝑔𝑠))
4847eleq1d 2814 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓𝑠) ∈ MblFn ↔ (𝑔𝑠) ∈ MblFn))
4948ralbidv 3157 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (∀𝑠𝑡 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn))
5045, 49anbi12d 632 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ↔ (𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn)))
51 eqeq2 2742 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5251adantl 481 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5350, 52anbi12d 632 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
54 eleq1 2817 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5554adantr 480 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5653, 55imbi12d 344 . . . . . . . . 9 ((𝑓 = 𝑔𝑎 = 𝑏) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
5756cbval2vw 2040 . . . . . . . 8 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn))
5842, 57bitrdi 287 . . . . . . 7 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
59 raleq 3298 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn))
6059anbi2d 630 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn)))
61 unieq 4885 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → 𝑟 = (𝑡 ∪ {}))
6261eqeq1d 2732 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ( 𝑟 = 𝑎 (𝑡 ∪ {}) = 𝑎))
6360, 62anbi12d 632 . . . . . . . . 9 (𝑟 = (𝑡 ∪ {}) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)))
6463imbi1d 341 . . . . . . . 8 (𝑟 = (𝑡 ∪ {}) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
65642albidv 1923 . . . . . . 7 (𝑟 = (𝑡 ∪ {}) → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
66 raleq 3298 . . . . . . . . . . 11 (𝑟 = 𝑆 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn))
6766anbi2d 630 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
68 unieq 4885 . . . . . . . . . . 11 (𝑟 = 𝑆 𝑟 = 𝑆)
6968eqeq1d 2732 . . . . . . . . . 10 (𝑟 = 𝑆 → ( 𝑟 = 𝑎 𝑆 = 𝑎))
7067, 69anbi12d 632 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎)))
7170imbi1d 341 . . . . . . . 8 (𝑟 = 𝑆 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
72712albidv 1923 . . . . . . 7 (𝑟 = 𝑆 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
73 frel 6696 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → Rel 𝑓)
7473adantr 480 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → Rel 𝑓)
75 fdm 6700 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → dom 𝑓 = 𝑎)
76 eqcom 2737 . . . . . . . . . . 11 (∅ = 𝑎𝑎 = ∅)
7776biimpi 216 . . . . . . . . . 10 (∅ = 𝑎𝑎 = ∅)
7875, 77sylan9eq 2785 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → dom 𝑓 = ∅)
79 reldm0 5894 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 = ∅ ↔ dom 𝑓 = ∅))
8079biimpar 477 . . . . . . . . . 10 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 = ∅)
81 mbf0 25542 . . . . . . . . . 10 ∅ ∈ MblFn
8280, 81eqeltrdi 2837 . . . . . . . . 9 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 ∈ MblFn)
8374, 78, 82syl2anc 584 . . . . . . . 8 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
8483gen2 1796 . . . . . . 7 𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
85 ref 15085 . . . . . . . . . . . . . . 15 ℜ:ℂ⟶ℝ
86 fco 6715 . . . . . . . . . . . . . . 15 ((ℜ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8785, 86mpan 690 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8887adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8988ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
90 recncf 24802 . . . . . . . . . . . . . . . . 17 ℜ ∈ (ℂ–cn→ℝ)
9190elexi 3473 . . . . . . . . . . . . . . . 16 ℜ ∈ V
92 vex 3454 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
9391, 92coex 7909 . . . . . . . . . . . . . . 15 (ℜ ∘ 𝑓) ∈ V
9493resex 6003 . . . . . . . . . . . . . 14 ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V
95 vuniex 7718 . . . . . . . . . . . . . 14 𝑡 ∈ V
96 eqcom 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑡 𝑡 = 𝑏)
9796biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑡 𝑡 = 𝑏)
9897adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
9998biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
100 eqid 2730 . . . . . . . . . . . . . . . . . . 19 ℂ = ℂ
101 feq123 6681 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
102100, 101mp3an3 1452 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
103 reseq1 5947 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
104103eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
105104adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
106105ralbidv 3157 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
107102, 106anbi12d 632 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
10899, 107bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
109 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
110109adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
111108, 110imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
112111spc2gv 3569 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
11394, 95, 112mp2an 692 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
114 ax-resscn 11132 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
115 fss 6707 . . . . . . . . . . . . . . . . . 18 ((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℜ:ℂ⟶ℂ)
11685, 114, 115mp2an 692 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℂ
117 fco 6715 . . . . . . . . . . . . . . . . 17 ((ℜ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℂ)
118116, 117mpan 690 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℂ)
119 ssun1 4144 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {})
120119unissi 4883 . . . . . . . . . . . . . . . . 17 𝑡 (𝑡 ∪ {})
121 id 22 . . . . . . . . . . . . . . . . 17 ( (𝑡 ∪ {}) = 𝑎 (𝑡 ∪ {}) = 𝑎)
122120, 121sseqtrid 3992 . . . . . . . . . . . . . . . 16 ( (𝑡 ∪ {}) = 𝑎 𝑡𝑎)
123 fssres 6729 . . . . . . . . . . . . . . . 16 (((ℜ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
124118, 122, 123syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
125124adantlr 715 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
126 elssuni 4904 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑡𝑟 𝑡)
127126resabs1d 5982 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℜ ∘ 𝑓) ↾ 𝑟))
128 resco 6226 . . . . . . . . . . . . . . . . . . . 20 ((ℜ ∘ 𝑓) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟))
129127, 128eqtrdi 2781 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
130129adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
131 elun1 4148 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟𝑡𝑟 ∈ (𝑡 ∪ {}))
132 reseq2 5948 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑟 → (𝑓𝑠) = (𝑓𝑟))
133132eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑟 → ((𝑓𝑠) ∈ MblFn ↔ (𝑓𝑟) ∈ MblFn))
134133rspccva 3590 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟 ∈ (𝑡 ∪ {})) → (𝑓𝑟) ∈ MblFn)
135131, 134sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
136135adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
137 fresin 6732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑎⟶ℂ → (𝑓𝑟):(𝑎𝑟)⟶ℂ)
138 ismbfcn 25537 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑟):(𝑎𝑟)⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
140139biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
141140ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
142136, 141mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn))
143142simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℜ ∘ (𝑓𝑟)) ∈ MblFn)
144130, 143eqeltrd 2829 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
145144ralrimiva 3126 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
146 reseq2 5948 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
147146eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
148147cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
149145, 148sylib 218 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
150149adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
151 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
152125, 150, 151syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
153113, 152mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
154 vsnid 4630 . . . . . . . . . . . . . . 15 ∈ {}
155 elun2 4149 . . . . . . . . . . . . . . 15 ( ∈ {} → ∈ (𝑡 ∪ {}))
156 reseq2 5948 . . . . . . . . . . . . . . . . 17 (𝑠 = → (𝑓𝑠) = (𝑓))
157156eleq1d 2814 . . . . . . . . . . . . . . . 16 (𝑠 = → ((𝑓𝑠) ∈ MblFn ↔ (𝑓) ∈ MblFn))
158157rspcv 3587 . . . . . . . . . . . . . . 15 ( ∈ (𝑡 ∪ {}) → (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn))
159154, 155, 158mp2b 10 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn)
160 resco 6226 . . . . . . . . . . . . . . 15 ((ℜ ∘ 𝑓) ↾ ) = (ℜ ∘ (𝑓))
161 fresin 6732 . . . . . . . . . . . . . . . . 17 (𝑓:𝑎⟶ℂ → (𝑓):(𝑎)⟶ℂ)
162 ismbfcn 25537 . . . . . . . . . . . . . . . . 17 ((𝑓):(𝑎)⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
163161, 162syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
164163simprbda 498 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℜ ∘ (𝑓)) ∈ MblFn)
165160, 164eqeltrid 2833 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
166159, 165sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
167166ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
168 uniun 4897 . . . . . . . . . . . . . . 15 (𝑡 ∪ {}) = ( 𝑡 {})
169 unisnv 4894 . . . . . . . . . . . . . . . 16 {} =
170169uneq2i 4131 . . . . . . . . . . . . . . 15 ( 𝑡 {}) = ( 𝑡)
171168, 170eqtri 2753 . . . . . . . . . . . . . 14 (𝑡 ∪ {}) = ( 𝑡)
172171, 121eqtr3id 2779 . . . . . . . . . . . . 13 ( (𝑡 ∪ {}) = 𝑎 → ( 𝑡) = 𝑎)
173172ad2antll 729 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ( 𝑡) = 𝑎)
17489, 153, 167, 173mbfres2 25553 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓) ∈ MblFn)
175 imf 15086 . . . . . . . . . . . . . . 15 ℑ:ℂ⟶ℝ
176 fco 6715 . . . . . . . . . . . . . . 15 ((ℑ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
177175, 176mpan 690 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℝ)
178177adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
179178ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
180 imcncf 24803 . . . . . . . . . . . . . . . . 17 ℑ ∈ (ℂ–cn→ℝ)
181180elexi 3473 . . . . . . . . . . . . . . . 16 ℑ ∈ V
182181, 92coex 7909 . . . . . . . . . . . . . . 15 (ℑ ∘ 𝑓) ∈ V
183182resex 6003 . . . . . . . . . . . . . 14 ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V
18497adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
185184biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
186 feq123 6681 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
187100, 186mp3an3 1452 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
188 reseq1 5947 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
189188eleq1d 2814 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
190189adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
191190ralbidv 3157 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
192187, 191anbi12d 632 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
193185, 192bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
194 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
195194adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
196193, 195imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
197196spc2gv 3569 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
198183, 95, 197mp2an 692 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
199 fss 6707 . . . . . . . . . . . . . . . . . 18 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
200175, 114, 199mp2an 692 . . . . . . . . . . . . . . . . 17 ℑ:ℂ⟶ℂ
201 fco 6715 . . . . . . . . . . . . . . . . 17 ((ℑ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℂ)
202200, 201mpan 690 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℂ)
203 fssres 6729 . . . . . . . . . . . . . . . 16 (((ℑ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
204202, 122, 203syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
205204adantlr 715 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
206126resabs1d 5982 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℑ ∘ 𝑓) ↾ 𝑟))
207 resco 6226 . . . . . . . . . . . . . . . . . . . 20 ((ℑ ∘ 𝑓) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟))
208206, 207eqtrdi 2781 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
209208adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
210142simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℑ ∘ (𝑓𝑟)) ∈ MblFn)
211209, 210eqeltrd 2829 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
212211ralrimiva 3126 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
213 reseq2 5948 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
214213eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
215214cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
216212, 215sylib 218 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
217216adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
218 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
219205, 217, 218syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
220198, 219mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
221 resco 6226 . . . . . . . . . . . . . . 15 ((ℑ ∘ 𝑓) ↾ ) = (ℑ ∘ (𝑓))
222163simplbda 499 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℑ ∘ (𝑓)) ∈ MblFn)
223221, 222eqeltrid 2833 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
224159, 223sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
225224ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
226179, 220, 225, 173mbfres2 25553 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓) ∈ MblFn)
227 ismbfcn 25537 . . . . . . . . . . . . 13 (𝑓:𝑎⟶ℂ → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
228227adantr 480 . . . . . . . . . . . 12 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
229228ad2antrl 728 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
230174, 226, 229mpbir2and 713 . . . . . . . . . 10 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → 𝑓 ∈ MblFn)
231230ex 412 . . . . . . . . 9 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
232231alrimivv 1928 . . . . . . . 8 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
233232a1i 11 . . . . . . 7 (𝑡 ∈ Fin → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
23435, 58, 65, 72, 84, 233findcard2 9134 . . . . . 6 (𝑆 ∈ Fin → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
235 2sp 2187 . . . . . 6 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
2364, 234, 2353syl 18 . . . . 5 (𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
23716, 25, 236vtocl2g 3543 . . . 4 ((𝐴 ∈ V ∧ 𝐹 ∈ V) → (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
23810, 237mpcom 38 . . 3 (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))
2393, 238mpan2d 694 . 2 (𝜑 → ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) → 𝐹 ∈ MblFn))
2401, 2, 239mp2and 699 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874  dom cdm 5641  cres 5643  ccom 5645  Rel wrel 5646  wf 6510  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  cre 15070  cim 15071  cnccncf 24776  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-xmet 21264  df-met 21265  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator