Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfresfi Structured version   Visualization version   GIF version

Theorem mbfresfi 37128
Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
Hypotheses
Ref Expression
mbfresfi.1 (𝜑𝐹:𝐴⟶ℂ)
mbfresfi.2 (𝜑𝑆 ∈ Fin)
mbfresfi.3 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
mbfresfi.4 (𝜑 𝑆 = 𝐴)
Assertion
Ref Expression
mbfresfi (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝜑,𝑠   𝐴,𝑠   𝐹,𝑠   𝑆,𝑠

Proof of Theorem mbfresfi
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfresfi.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 mbfresfi.3 . 2 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
3 mbfresfi.4 . . 3 (𝜑 𝑆 = 𝐴)
4 mbfresfi.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
54uniexd 7741 . . . . . 6 (𝜑 𝑆 ∈ V)
63, 5eqeltrrd 2829 . . . . 5 (𝜑𝐴 ∈ V)
7 fex 7232 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ V) → 𝐹 ∈ V)
87ex 412 . . . . . 6 (𝐹:𝐴⟶ℂ → (𝐴 ∈ V → 𝐹 ∈ V))
91, 8syl 17 . . . . 5 (𝜑 → (𝐴 ∈ V → 𝐹 ∈ V))
106, 9jcai 516 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐹 ∈ V))
11 feq2 6698 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓:𝑎⟶ℂ ↔ 𝑓:𝐴⟶ℂ))
1211anbi1d 629 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
13 eqeq2 2739 . . . . . . . 8 (𝑎 = 𝐴 → ( 𝑆 = 𝑎 𝑆 = 𝐴))
1412, 13anbi12d 630 . . . . . . 7 (𝑎 = 𝐴 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) ↔ ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
1514imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)))
1615imbi2d 340 . . . . 5 (𝑎 = 𝐴 → ((𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn))))
17 feq1 6697 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝐴⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
18 reseq1 5973 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
1918eleq1d 2813 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑠) ∈ MblFn ↔ (𝐹𝑠) ∈ MblFn))
2019ralbidv 3172 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑠𝑆 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn))
2117, 20anbi12d 630 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)))
2221anbi1d 629 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) ↔ ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
23 eleq1 2816 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn))
2422, 23imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn) ↔ (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
2524imbi2d 340 . . . . 5 (𝑓 = 𝐹 → ((𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))))
26 rzal 4504 . . . . . . . . . . . 12 (𝑟 = ∅ → ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)
2726biantrud 531 . . . . . . . . . . 11 (𝑟 = ∅ → (𝑓:𝑎⟶ℂ ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)))
2827bicomd 222 . . . . . . . . . 10 (𝑟 = ∅ → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ 𝑓:𝑎⟶ℂ))
29 unieq 4914 . . . . . . . . . . . 12 (𝑟 = ∅ → 𝑟 = ∅)
30 uni0 4933 . . . . . . . . . . . 12 ∅ = ∅
3129, 30eqtrdi 2783 . . . . . . . . . . 11 (𝑟 = ∅ → 𝑟 = ∅)
3231eqeq1d 2729 . . . . . . . . . 10 (𝑟 = ∅ → ( 𝑟 = 𝑎 ↔ ∅ = 𝑎))
3328, 32anbi12d 630 . . . . . . . . 9 (𝑟 = ∅ → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ (𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎)))
3433imbi1d 341 . . . . . . . 8 (𝑟 = ∅ → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
35342albidv 1919 . . . . . . 7 (𝑟 = ∅ → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
36 raleq 3317 . . . . . . . . . . . 12 (𝑟 = 𝑡 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn))
3736anbi2d 628 . . . . . . . . . . 11 (𝑟 = 𝑡 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn)))
38 unieq 4914 . . . . . . . . . . . 12 (𝑟 = 𝑡 𝑟 = 𝑡)
3938eqeq1d 2729 . . . . . . . . . . 11 (𝑟 = 𝑡 → ( 𝑟 = 𝑎 𝑡 = 𝑎))
4037, 39anbi12d 630 . . . . . . . . . 10 (𝑟 = 𝑡 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎)))
4140imbi1d 341 . . . . . . . . 9 (𝑟 = 𝑡 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
42412albidv 1919 . . . . . . . 8 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
43 simpl 482 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑓 = 𝑔)
44 simpr 484 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑎 = 𝑏)
4543, 44feq12d 6704 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓:𝑎⟶ℂ ↔ 𝑔:𝑏⟶ℂ))
46 reseq1 5973 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑠) = (𝑔𝑠))
4746adantr 480 . . . . . . . . . . . . . 14 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓𝑠) = (𝑔𝑠))
4847eleq1d 2813 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓𝑠) ∈ MblFn ↔ (𝑔𝑠) ∈ MblFn))
4948ralbidv 3172 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (∀𝑠𝑡 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn))
5045, 49anbi12d 630 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ↔ (𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn)))
51 eqeq2 2739 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5251adantl 481 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5350, 52anbi12d 630 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
54 eleq1 2816 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5554adantr 480 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5653, 55imbi12d 344 . . . . . . . . 9 ((𝑓 = 𝑔𝑎 = 𝑏) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
5756cbval2vw 2036 . . . . . . . 8 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn))
5842, 57bitrdi 287 . . . . . . 7 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
59 raleq 3317 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn))
6059anbi2d 628 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn)))
61 unieq 4914 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → 𝑟 = (𝑡 ∪ {}))
6261eqeq1d 2729 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ( 𝑟 = 𝑎 (𝑡 ∪ {}) = 𝑎))
6360, 62anbi12d 630 . . . . . . . . 9 (𝑟 = (𝑡 ∪ {}) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)))
6463imbi1d 341 . . . . . . . 8 (𝑟 = (𝑡 ∪ {}) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
65642albidv 1919 . . . . . . 7 (𝑟 = (𝑡 ∪ {}) → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
66 raleq 3317 . . . . . . . . . . 11 (𝑟 = 𝑆 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn))
6766anbi2d 628 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
68 unieq 4914 . . . . . . . . . . 11 (𝑟 = 𝑆 𝑟 = 𝑆)
6968eqeq1d 2729 . . . . . . . . . 10 (𝑟 = 𝑆 → ( 𝑟 = 𝑎 𝑆 = 𝑎))
7067, 69anbi12d 630 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎)))
7170imbi1d 341 . . . . . . . 8 (𝑟 = 𝑆 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
72712albidv 1919 . . . . . . 7 (𝑟 = 𝑆 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
73 frel 6721 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → Rel 𝑓)
7473adantr 480 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → Rel 𝑓)
75 fdm 6725 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → dom 𝑓 = 𝑎)
76 eqcom 2734 . . . . . . . . . . 11 (∅ = 𝑎𝑎 = ∅)
7776biimpi 215 . . . . . . . . . 10 (∅ = 𝑎𝑎 = ∅)
7875, 77sylan9eq 2787 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → dom 𝑓 = ∅)
79 reldm0 5924 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 = ∅ ↔ dom 𝑓 = ∅))
8079biimpar 477 . . . . . . . . . 10 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 = ∅)
81 mbf0 25556 . . . . . . . . . 10 ∅ ∈ MblFn
8280, 81eqeltrdi 2836 . . . . . . . . 9 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 ∈ MblFn)
8374, 78, 82syl2anc 583 . . . . . . . 8 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
8483gen2 1791 . . . . . . 7 𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
85 ref 15085 . . . . . . . . . . . . . . 15 ℜ:ℂ⟶ℝ
86 fco 6741 . . . . . . . . . . . . . . 15 ((ℜ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8785, 86mpan 689 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8887adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8988ad2antrl 727 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
90 recncf 24815 . . . . . . . . . . . . . . . . 17 ℜ ∈ (ℂ–cn→ℝ)
9190elexi 3489 . . . . . . . . . . . . . . . 16 ℜ ∈ V
92 vex 3473 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
9391, 92coex 7932 . . . . . . . . . . . . . . 15 (ℜ ∘ 𝑓) ∈ V
9493resex 6027 . . . . . . . . . . . . . 14 ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V
95 vuniex 7738 . . . . . . . . . . . . . 14 𝑡 ∈ V
96 eqcom 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑡 𝑡 = 𝑏)
9796biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑡 𝑡 = 𝑏)
9897adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
9998biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
100 eqid 2727 . . . . . . . . . . . . . . . . . . 19 ℂ = ℂ
101 feq123 6706 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
102100, 101mp3an3 1447 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
103 reseq1 5973 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
104103eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
105104adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
106105ralbidv 3172 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
107102, 106anbi12d 630 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
10899, 107bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
109 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
110109adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
111108, 110imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
112111spc2gv 3585 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
11394, 95, 112mp2an 691 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
114 ax-resscn 11189 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
115 fss 6733 . . . . . . . . . . . . . . . . . 18 ((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℜ:ℂ⟶ℂ)
11685, 114, 115mp2an 691 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℂ
117 fco 6741 . . . . . . . . . . . . . . . . 17 ((ℜ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℂ)
118116, 117mpan 689 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℂ)
119 ssun1 4168 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {})
120119unissi 4912 . . . . . . . . . . . . . . . . 17 𝑡 (𝑡 ∪ {})
121 id 22 . . . . . . . . . . . . . . . . 17 ( (𝑡 ∪ {}) = 𝑎 (𝑡 ∪ {}) = 𝑎)
122120, 121sseqtrid 4030 . . . . . . . . . . . . . . . 16 ( (𝑡 ∪ {}) = 𝑎 𝑡𝑎)
123 fssres 6757 . . . . . . . . . . . . . . . 16 (((ℜ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
124118, 122, 123syl2an 595 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
125124adantlr 714 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
126 elssuni 4935 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑡𝑟 𝑡)
127126resabs1d 6010 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℜ ∘ 𝑓) ↾ 𝑟))
128 resco 6248 . . . . . . . . . . . . . . . . . . . 20 ((ℜ ∘ 𝑓) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟))
129127, 128eqtrdi 2783 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
130129adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
131 elun1 4172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟𝑡𝑟 ∈ (𝑡 ∪ {}))
132 reseq2 5974 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑟 → (𝑓𝑠) = (𝑓𝑟))
133132eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑟 → ((𝑓𝑠) ∈ MblFn ↔ (𝑓𝑟) ∈ MblFn))
134133rspccva 3606 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟 ∈ (𝑡 ∪ {})) → (𝑓𝑟) ∈ MblFn)
135131, 134sylan2 592 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
136135adantll 713 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
137 fresin 6760 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑎⟶ℂ → (𝑓𝑟):(𝑎𝑟)⟶ℂ)
138 ismbfcn 25551 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑟):(𝑎𝑟)⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
140139biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
141140ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
142136, 141mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn))
143142simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℜ ∘ (𝑓𝑟)) ∈ MblFn)
144130, 143eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
145144ralrimiva 3141 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
146 reseq2 5974 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
147146eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
148147cbvralvw 3229 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
149145, 148sylib 217 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
150149adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
151 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
152125, 150, 151syl2anc 583 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
153113, 152mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
154 vsnid 4661 . . . . . . . . . . . . . . 15 ∈ {}
155 elun2 4173 . . . . . . . . . . . . . . 15 ( ∈ {} → ∈ (𝑡 ∪ {}))
156 reseq2 5974 . . . . . . . . . . . . . . . . 17 (𝑠 = → (𝑓𝑠) = (𝑓))
157156eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑠 = → ((𝑓𝑠) ∈ MblFn ↔ (𝑓) ∈ MblFn))
158157rspcv 3603 . . . . . . . . . . . . . . 15 ( ∈ (𝑡 ∪ {}) → (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn))
159154, 155, 158mp2b 10 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn)
160 resco 6248 . . . . . . . . . . . . . . 15 ((ℜ ∘ 𝑓) ↾ ) = (ℜ ∘ (𝑓))
161 fresin 6760 . . . . . . . . . . . . . . . . 17 (𝑓:𝑎⟶ℂ → (𝑓):(𝑎)⟶ℂ)
162 ismbfcn 25551 . . . . . . . . . . . . . . . . 17 ((𝑓):(𝑎)⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
163161, 162syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
164163simprbda 498 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℜ ∘ (𝑓)) ∈ MblFn)
165160, 164eqeltrid 2832 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
166159, 165sylan2 592 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
167166ad2antrl 727 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
168 uniun 4928 . . . . . . . . . . . . . . 15 (𝑡 ∪ {}) = ( 𝑡 {})
169 unisnv 4925 . . . . . . . . . . . . . . . 16 {} =
170169uneq2i 4156 . . . . . . . . . . . . . . 15 ( 𝑡 {}) = ( 𝑡)
171168, 170eqtri 2755 . . . . . . . . . . . . . 14 (𝑡 ∪ {}) = ( 𝑡)
172171, 121eqtr3id 2781 . . . . . . . . . . . . 13 ( (𝑡 ∪ {}) = 𝑎 → ( 𝑡) = 𝑎)
173172ad2antll 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ( 𝑡) = 𝑎)
17489, 153, 167, 173mbfres2 25567 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓) ∈ MblFn)
175 imf 15086 . . . . . . . . . . . . . . 15 ℑ:ℂ⟶ℝ
176 fco 6741 . . . . . . . . . . . . . . 15 ((ℑ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
177175, 176mpan 689 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℝ)
178177adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
179178ad2antrl 727 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
180 imcncf 24816 . . . . . . . . . . . . . . . . 17 ℑ ∈ (ℂ–cn→ℝ)
181180elexi 3489 . . . . . . . . . . . . . . . 16 ℑ ∈ V
182181, 92coex 7932 . . . . . . . . . . . . . . 15 (ℑ ∘ 𝑓) ∈ V
183182resex 6027 . . . . . . . . . . . . . 14 ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V
18497adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
185184biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
186 feq123 6706 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
187100, 186mp3an3 1447 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
188 reseq1 5973 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
189188eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
190189adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
191190ralbidv 3172 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
192187, 191anbi12d 630 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
193185, 192bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
194 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
195194adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
196193, 195imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
197196spc2gv 3585 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
198183, 95, 197mp2an 691 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
199 fss 6733 . . . . . . . . . . . . . . . . . 18 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
200175, 114, 199mp2an 691 . . . . . . . . . . . . . . . . 17 ℑ:ℂ⟶ℂ
201 fco 6741 . . . . . . . . . . . . . . . . 17 ((ℑ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℂ)
202200, 201mpan 689 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℂ)
203 fssres 6757 . . . . . . . . . . . . . . . 16 (((ℑ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
204202, 122, 203syl2an 595 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
205204adantlr 714 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
206126resabs1d 6010 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℑ ∘ 𝑓) ↾ 𝑟))
207 resco 6248 . . . . . . . . . . . . . . . . . . . 20 ((ℑ ∘ 𝑓) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟))
208206, 207eqtrdi 2783 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
209208adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
210142simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℑ ∘ (𝑓𝑟)) ∈ MblFn)
211209, 210eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
212211ralrimiva 3141 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
213 reseq2 5974 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
214213eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
215214cbvralvw 3229 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
216212, 215sylib 217 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
217216adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
218 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
219205, 217, 218syl2anc 583 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
220198, 219mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
221 resco 6248 . . . . . . . . . . . . . . 15 ((ℑ ∘ 𝑓) ↾ ) = (ℑ ∘ (𝑓))
222163simplbda 499 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℑ ∘ (𝑓)) ∈ MblFn)
223221, 222eqeltrid 2832 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
224159, 223sylan2 592 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
225224ad2antrl 727 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
226179, 220, 225, 173mbfres2 25567 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓) ∈ MblFn)
227 ismbfcn 25551 . . . . . . . . . . . . 13 (𝑓:𝑎⟶ℂ → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
228227adantr 480 . . . . . . . . . . . 12 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
229228ad2antrl 727 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
230174, 226, 229mpbir2and 712 . . . . . . . . . 10 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → 𝑓 ∈ MblFn)
231230ex 412 . . . . . . . . 9 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
232231alrimivv 1924 . . . . . . . 8 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
233232a1i 11 . . . . . . 7 (𝑡 ∈ Fin → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
23435, 58, 65, 72, 84, 233findcard2 9182 . . . . . 6 (𝑆 ∈ Fin → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
235 2sp 2172 . . . . . 6 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
2364, 234, 2353syl 18 . . . . 5 (𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
23716, 25, 236vtocl2g 3558 . . . 4 ((𝐴 ∈ V ∧ 𝐹 ∈ V) → (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
23810, 237mpcom 38 . . 3 (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))
2393, 238mpan2d 693 . 2 (𝜑 → ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) → 𝐹 ∈ MblFn))
2401, 2, 239mp2and 698 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  cun 3942  cin 3943  wss 3944  c0 4318  {csn 4624   cuni 4903  dom cdm 5672  cres 5674  ccom 5676  Rel wrel 5677  wf 6538  (class class class)co 7414  Fincfn 8957  cc 11130  cr 11131  cre 15070  cim 15071  cnccncf 24789  MblFncmbf 25536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xadd 13119  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-xmet 21265  df-met 21266  df-cncf 24791  df-ovol 25386  df-vol 25387  df-mbf 25541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator