Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfresfi Structured version   Visualization version   GIF version

Theorem mbfresfi 35823
Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
Hypotheses
Ref Expression
mbfresfi.1 (𝜑𝐹:𝐴⟶ℂ)
mbfresfi.2 (𝜑𝑆 ∈ Fin)
mbfresfi.3 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
mbfresfi.4 (𝜑 𝑆 = 𝐴)
Assertion
Ref Expression
mbfresfi (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝜑,𝑠   𝐴,𝑠   𝐹,𝑠   𝑆,𝑠

Proof of Theorem mbfresfi
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfresfi.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 mbfresfi.3 . 2 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
3 mbfresfi.4 . . 3 (𝜑 𝑆 = 𝐴)
4 mbfresfi.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
54uniexd 7595 . . . . . 6 (𝜑 𝑆 ∈ V)
63, 5eqeltrrd 2840 . . . . 5 (𝜑𝐴 ∈ V)
7 fex 7102 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ V) → 𝐹 ∈ V)
87ex 413 . . . . . 6 (𝐹:𝐴⟶ℂ → (𝐴 ∈ V → 𝐹 ∈ V))
91, 8syl 17 . . . . 5 (𝜑 → (𝐴 ∈ V → 𝐹 ∈ V))
106, 9jcai 517 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐹 ∈ V))
11 feq2 6582 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓:𝑎⟶ℂ ↔ 𝑓:𝐴⟶ℂ))
1211anbi1d 630 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
13 eqeq2 2750 . . . . . . . 8 (𝑎 = 𝐴 → ( 𝑆 = 𝑎 𝑆 = 𝐴))
1412, 13anbi12d 631 . . . . . . 7 (𝑎 = 𝐴 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) ↔ ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
1514imbi1d 342 . . . . . 6 (𝑎 = 𝐴 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)))
1615imbi2d 341 . . . . 5 (𝑎 = 𝐴 → ((𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn))))
17 feq1 6581 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝐴⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
18 reseq1 5885 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
1918eleq1d 2823 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑠) ∈ MblFn ↔ (𝐹𝑠) ∈ MblFn))
2019ralbidv 3112 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑠𝑆 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn))
2117, 20anbi12d 631 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)))
2221anbi1d 630 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) ↔ ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
23 eleq1 2826 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn))
2422, 23imbi12d 345 . . . . . 6 (𝑓 = 𝐹 → ((((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn) ↔ (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
2524imbi2d 341 . . . . 5 (𝑓 = 𝐹 → ((𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))))
26 rzal 4439 . . . . . . . . . . . 12 (𝑟 = ∅ → ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)
2726biantrud 532 . . . . . . . . . . 11 (𝑟 = ∅ → (𝑓:𝑎⟶ℂ ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)))
2827bicomd 222 . . . . . . . . . 10 (𝑟 = ∅ → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ 𝑓:𝑎⟶ℂ))
29 unieq 4850 . . . . . . . . . . . 12 (𝑟 = ∅ → 𝑟 = ∅)
30 uni0 4869 . . . . . . . . . . . 12 ∅ = ∅
3129, 30eqtrdi 2794 . . . . . . . . . . 11 (𝑟 = ∅ → 𝑟 = ∅)
3231eqeq1d 2740 . . . . . . . . . 10 (𝑟 = ∅ → ( 𝑟 = 𝑎 ↔ ∅ = 𝑎))
3328, 32anbi12d 631 . . . . . . . . 9 (𝑟 = ∅ → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ (𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎)))
3433imbi1d 342 . . . . . . . 8 (𝑟 = ∅ → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
35342albidv 1926 . . . . . . 7 (𝑟 = ∅ → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
36 raleq 3342 . . . . . . . . . . . 12 (𝑟 = 𝑡 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn))
3736anbi2d 629 . . . . . . . . . . 11 (𝑟 = 𝑡 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn)))
38 unieq 4850 . . . . . . . . . . . 12 (𝑟 = 𝑡 𝑟 = 𝑡)
3938eqeq1d 2740 . . . . . . . . . . 11 (𝑟 = 𝑡 → ( 𝑟 = 𝑎 𝑡 = 𝑎))
4037, 39anbi12d 631 . . . . . . . . . 10 (𝑟 = 𝑡 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎)))
4140imbi1d 342 . . . . . . . . 9 (𝑟 = 𝑡 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
42412albidv 1926 . . . . . . . 8 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
43 simpl 483 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑓 = 𝑔)
44 simpr 485 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑎 = 𝑏)
4543, 44feq12d 6588 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓:𝑎⟶ℂ ↔ 𝑔:𝑏⟶ℂ))
46 reseq1 5885 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑠) = (𝑔𝑠))
4746adantr 481 . . . . . . . . . . . . . 14 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓𝑠) = (𝑔𝑠))
4847eleq1d 2823 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓𝑠) ∈ MblFn ↔ (𝑔𝑠) ∈ MblFn))
4948ralbidv 3112 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (∀𝑠𝑡 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn))
5045, 49anbi12d 631 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ↔ (𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn)))
51 eqeq2 2750 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5251adantl 482 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5350, 52anbi12d 631 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
54 eleq1 2826 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5554adantr 481 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5653, 55imbi12d 345 . . . . . . . . 9 ((𝑓 = 𝑔𝑎 = 𝑏) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
5756cbval2vw 2043 . . . . . . . 8 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn))
5842, 57bitrdi 287 . . . . . . 7 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
59 raleq 3342 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn))
6059anbi2d 629 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn)))
61 unieq 4850 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → 𝑟 = (𝑡 ∪ {}))
6261eqeq1d 2740 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ( 𝑟 = 𝑎 (𝑡 ∪ {}) = 𝑎))
6360, 62anbi12d 631 . . . . . . . . 9 (𝑟 = (𝑡 ∪ {}) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)))
6463imbi1d 342 . . . . . . . 8 (𝑟 = (𝑡 ∪ {}) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
65642albidv 1926 . . . . . . 7 (𝑟 = (𝑡 ∪ {}) → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
66 raleq 3342 . . . . . . . . . . 11 (𝑟 = 𝑆 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn))
6766anbi2d 629 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
68 unieq 4850 . . . . . . . . . . 11 (𝑟 = 𝑆 𝑟 = 𝑆)
6968eqeq1d 2740 . . . . . . . . . 10 (𝑟 = 𝑆 → ( 𝑟 = 𝑎 𝑆 = 𝑎))
7067, 69anbi12d 631 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎)))
7170imbi1d 342 . . . . . . . 8 (𝑟 = 𝑆 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
72712albidv 1926 . . . . . . 7 (𝑟 = 𝑆 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
73 frel 6605 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → Rel 𝑓)
7473adantr 481 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → Rel 𝑓)
75 fdm 6609 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → dom 𝑓 = 𝑎)
76 eqcom 2745 . . . . . . . . . . 11 (∅ = 𝑎𝑎 = ∅)
7776biimpi 215 . . . . . . . . . 10 (∅ = 𝑎𝑎 = ∅)
7875, 77sylan9eq 2798 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → dom 𝑓 = ∅)
79 reldm0 5837 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 = ∅ ↔ dom 𝑓 = ∅))
8079biimpar 478 . . . . . . . . . 10 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 = ∅)
81 mbf0 24798 . . . . . . . . . 10 ∅ ∈ MblFn
8280, 81eqeltrdi 2847 . . . . . . . . 9 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 ∈ MblFn)
8374, 78, 82syl2anc 584 . . . . . . . 8 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
8483gen2 1799 . . . . . . 7 𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
85 ref 14823 . . . . . . . . . . . . . . 15 ℜ:ℂ⟶ℝ
86 fco 6624 . . . . . . . . . . . . . . 15 ((ℜ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8785, 86mpan 687 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8887adantr 481 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8988ad2antrl 725 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
90 recncf 24065 . . . . . . . . . . . . . . . . 17 ℜ ∈ (ℂ–cn→ℝ)
9190elexi 3451 . . . . . . . . . . . . . . . 16 ℜ ∈ V
92 vex 3436 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
9391, 92coex 7777 . . . . . . . . . . . . . . 15 (ℜ ∘ 𝑓) ∈ V
9493resex 5939 . . . . . . . . . . . . . 14 ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V
95 vuniex 7592 . . . . . . . . . . . . . 14 𝑡 ∈ V
96 eqcom 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑡 𝑡 = 𝑏)
9796biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑡 𝑡 = 𝑏)
9897adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
9998biantrud 532 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
100 eqid 2738 . . . . . . . . . . . . . . . . . . 19 ℂ = ℂ
101 feq123 6590 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
102100, 101mp3an3 1449 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
103 reseq1 5885 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
104103eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
105104adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
106105ralbidv 3112 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
107102, 106anbi12d 631 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
10899, 107bitr3d 280 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
109 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
110109adantr 481 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
111108, 110imbi12d 345 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
112111spc2gv 3539 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
11394, 95, 112mp2an 689 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
114 ax-resscn 10928 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
115 fss 6617 . . . . . . . . . . . . . . . . . 18 ((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℜ:ℂ⟶ℂ)
11685, 114, 115mp2an 689 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℂ
117 fco 6624 . . . . . . . . . . . . . . . . 17 ((ℜ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℂ)
118116, 117mpan 687 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℂ)
119 ssun1 4106 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {})
120119unissi 4848 . . . . . . . . . . . . . . . . 17 𝑡 (𝑡 ∪ {})
121 id 22 . . . . . . . . . . . . . . . . 17 ( (𝑡 ∪ {}) = 𝑎 (𝑡 ∪ {}) = 𝑎)
122120, 121sseqtrid 3973 . . . . . . . . . . . . . . . 16 ( (𝑡 ∪ {}) = 𝑎 𝑡𝑎)
123 fssres 6640 . . . . . . . . . . . . . . . 16 (((ℜ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
124118, 122, 123syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
125124adantlr 712 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
126 elssuni 4871 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑡𝑟 𝑡)
127126resabs1d 5922 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℜ ∘ 𝑓) ↾ 𝑟))
128 resco 6154 . . . . . . . . . . . . . . . . . . . 20 ((ℜ ∘ 𝑓) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟))
129127, 128eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
130129adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
131 elun1 4110 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟𝑡𝑟 ∈ (𝑡 ∪ {}))
132 reseq2 5886 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑟 → (𝑓𝑠) = (𝑓𝑟))
133132eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑟 → ((𝑓𝑠) ∈ MblFn ↔ (𝑓𝑟) ∈ MblFn))
134133rspccva 3560 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟 ∈ (𝑡 ∪ {})) → (𝑓𝑟) ∈ MblFn)
135131, 134sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
136135adantll 711 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
137 fresin 6643 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑎⟶ℂ → (𝑓𝑟):(𝑎𝑟)⟶ℂ)
138 ismbfcn 24793 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑟):(𝑎𝑟)⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
140139biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
141140ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
142136, 141mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn))
143142simpld 495 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℜ ∘ (𝑓𝑟)) ∈ MblFn)
144130, 143eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
145144ralrimiva 3103 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
146 reseq2 5886 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
147146eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
148147cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
149145, 148sylib 217 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
150149adantr 481 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
151 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
152125, 150, 151syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
153113, 152mpan9 507 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
154 vsnid 4598 . . . . . . . . . . . . . . 15 ∈ {}
155 elun2 4111 . . . . . . . . . . . . . . 15 ( ∈ {} → ∈ (𝑡 ∪ {}))
156 reseq2 5886 . . . . . . . . . . . . . . . . 17 (𝑠 = → (𝑓𝑠) = (𝑓))
157156eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑠 = → ((𝑓𝑠) ∈ MblFn ↔ (𝑓) ∈ MblFn))
158157rspcv 3557 . . . . . . . . . . . . . . 15 ( ∈ (𝑡 ∪ {}) → (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn))
159154, 155, 158mp2b 10 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn)
160 resco 6154 . . . . . . . . . . . . . . 15 ((ℜ ∘ 𝑓) ↾ ) = (ℜ ∘ (𝑓))
161 fresin 6643 . . . . . . . . . . . . . . . . 17 (𝑓:𝑎⟶ℂ → (𝑓):(𝑎)⟶ℂ)
162 ismbfcn 24793 . . . . . . . . . . . . . . . . 17 ((𝑓):(𝑎)⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
163161, 162syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
164163simprbda 499 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℜ ∘ (𝑓)) ∈ MblFn)
165160, 164eqeltrid 2843 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
166159, 165sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
167166ad2antrl 725 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
168 uniun 4864 . . . . . . . . . . . . . . 15 (𝑡 ∪ {}) = ( 𝑡 {})
169 vex 3436 . . . . . . . . . . . . . . . . 17 ∈ V
170169unisn 4861 . . . . . . . . . . . . . . . 16 {} =
171170uneq2i 4094 . . . . . . . . . . . . . . 15 ( 𝑡 {}) = ( 𝑡)
172168, 171eqtri 2766 . . . . . . . . . . . . . 14 (𝑡 ∪ {}) = ( 𝑡)
173172, 121eqtr3id 2792 . . . . . . . . . . . . 13 ( (𝑡 ∪ {}) = 𝑎 → ( 𝑡) = 𝑎)
174173ad2antll 726 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ( 𝑡) = 𝑎)
17589, 153, 167, 174mbfres2 24809 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓) ∈ MblFn)
176 imf 14824 . . . . . . . . . . . . . . 15 ℑ:ℂ⟶ℝ
177 fco 6624 . . . . . . . . . . . . . . 15 ((ℑ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
178176, 177mpan 687 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℝ)
179178adantr 481 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
180179ad2antrl 725 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
181 imcncf 24066 . . . . . . . . . . . . . . . . 17 ℑ ∈ (ℂ–cn→ℝ)
182181elexi 3451 . . . . . . . . . . . . . . . 16 ℑ ∈ V
183182, 92coex 7777 . . . . . . . . . . . . . . 15 (ℑ ∘ 𝑓) ∈ V
184183resex 5939 . . . . . . . . . . . . . 14 ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V
18597adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
186185biantrud 532 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
187 feq123 6590 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
188100, 187mp3an3 1449 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
189 reseq1 5885 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
190189eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
191190adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
192191ralbidv 3112 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
193188, 192anbi12d 631 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
194186, 193bitr3d 280 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
195 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
196195adantr 481 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
197194, 196imbi12d 345 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
198197spc2gv 3539 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
199184, 95, 198mp2an 689 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
200 fss 6617 . . . . . . . . . . . . . . . . . 18 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
201176, 114, 200mp2an 689 . . . . . . . . . . . . . . . . 17 ℑ:ℂ⟶ℂ
202 fco 6624 . . . . . . . . . . . . . . . . 17 ((ℑ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℂ)
203201, 202mpan 687 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℂ)
204 fssres 6640 . . . . . . . . . . . . . . . 16 (((ℑ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
205203, 122, 204syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
206205adantlr 712 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
207126resabs1d 5922 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℑ ∘ 𝑓) ↾ 𝑟))
208 resco 6154 . . . . . . . . . . . . . . . . . . . 20 ((ℑ ∘ 𝑓) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟))
209207, 208eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
210209adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
211142simprd 496 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℑ ∘ (𝑓𝑟)) ∈ MblFn)
212210, 211eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
213212ralrimiva 3103 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
214 reseq2 5886 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
215214eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
216215cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
217213, 216sylib 217 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
218217adantr 481 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
219 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
220206, 218, 219syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
221199, 220mpan9 507 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
222 resco 6154 . . . . . . . . . . . . . . 15 ((ℑ ∘ 𝑓) ↾ ) = (ℑ ∘ (𝑓))
223163simplbda 500 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℑ ∘ (𝑓)) ∈ MblFn)
224222, 223eqeltrid 2843 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
225159, 224sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
226225ad2antrl 725 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
227180, 221, 226, 174mbfres2 24809 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓) ∈ MblFn)
228 ismbfcn 24793 . . . . . . . . . . . . 13 (𝑓:𝑎⟶ℂ → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
229228adantr 481 . . . . . . . . . . . 12 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
230229ad2antrl 725 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
231175, 227, 230mpbir2and 710 . . . . . . . . . 10 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → 𝑓 ∈ MblFn)
232231ex 413 . . . . . . . . 9 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
233232alrimivv 1931 . . . . . . . 8 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
234233a1i 11 . . . . . . 7 (𝑡 ∈ Fin → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
23535, 58, 65, 72, 84, 234findcard2 8947 . . . . . 6 (𝑆 ∈ Fin → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
236 2sp 2179 . . . . . 6 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
2374, 235, 2363syl 18 . . . . 5 (𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
23816, 25, 237vtocl2g 3510 . . . 4 ((𝐴 ∈ V ∧ 𝐹 ∈ V) → (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
23910, 238mpcom 38 . . 3 (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))
2403, 239mpan2d 691 . 2 (𝜑 → ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) → 𝐹 ∈ MblFn))
2411, 2, 240mp2and 696 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   cuni 4839  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594  wf 6429  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  cre 14808  cim 14809  cnccncf 24039  MblFncmbf 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-xmet 20590  df-met 20591  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator