Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfresfi Structured version   Visualization version   GIF version

Theorem mbfresfi 37673
Description: Measurability of a piecewise function across arbitrarily many subsets. (Contributed by Brendan Leahy, 31-Mar-2018.)
Hypotheses
Ref Expression
mbfresfi.1 (𝜑𝐹:𝐴⟶ℂ)
mbfresfi.2 (𝜑𝑆 ∈ Fin)
mbfresfi.3 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
mbfresfi.4 (𝜑 𝑆 = 𝐴)
Assertion
Ref Expression
mbfresfi (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝜑,𝑠   𝐴,𝑠   𝐹,𝑠   𝑆,𝑠

Proof of Theorem mbfresfi
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfresfi.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 mbfresfi.3 . 2 (𝜑 → ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)
3 mbfresfi.4 . . 3 (𝜑 𝑆 = 𝐴)
4 mbfresfi.2 . . . . . . 7 (𝜑𝑆 ∈ Fin)
54uniexd 7762 . . . . . 6 (𝜑 𝑆 ∈ V)
63, 5eqeltrrd 2842 . . . . 5 (𝜑𝐴 ∈ V)
7 fex 7246 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ V) → 𝐹 ∈ V)
87ex 412 . . . . . 6 (𝐹:𝐴⟶ℂ → (𝐴 ∈ V → 𝐹 ∈ V))
91, 8syl 17 . . . . 5 (𝜑 → (𝐴 ∈ V → 𝐹 ∈ V))
106, 9jcai 516 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐹 ∈ V))
11 feq2 6717 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑓:𝑎⟶ℂ ↔ 𝑓:𝐴⟶ℂ))
1211anbi1d 631 . . . . . . . 8 (𝑎 = 𝐴 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
13 eqeq2 2749 . . . . . . . 8 (𝑎 = 𝐴 → ( 𝑆 = 𝑎 𝑆 = 𝐴))
1412, 13anbi12d 632 . . . . . . 7 (𝑎 = 𝐴 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) ↔ ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
1514imbi1d 341 . . . . . 6 (𝑎 = 𝐴 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)))
1615imbi2d 340 . . . . 5 (𝑎 = 𝐴 → ((𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn))))
17 feq1 6716 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓:𝐴⟶ℂ ↔ 𝐹:𝐴⟶ℂ))
18 reseq1 5991 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
1918eleq1d 2826 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑠) ∈ MblFn ↔ (𝐹𝑠) ∈ MblFn))
2019ralbidv 3178 . . . . . . . . 9 (𝑓 = 𝐹 → (∀𝑠𝑆 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn))
2117, 20anbi12d 632 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn)))
2221anbi1d 631 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) ↔ ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴)))
23 eleq1 2829 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 ∈ MblFn ↔ 𝐹 ∈ MblFn))
2422, 23imbi12d 344 . . . . . 6 (𝑓 = 𝐹 → ((((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn) ↔ (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
2524imbi2d 340 . . . . 5 (𝑓 = 𝐹 → ((𝜑 → (((𝑓:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝑓 ∈ MblFn)) ↔ (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))))
26 rzal 4509 . . . . . . . . . . . 12 (𝑟 = ∅ → ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)
2726biantrud 531 . . . . . . . . . . 11 (𝑟 = ∅ → (𝑓:𝑎⟶ℂ ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn)))
2827bicomd 223 . . . . . . . . . 10 (𝑟 = ∅ → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ 𝑓:𝑎⟶ℂ))
29 unieq 4918 . . . . . . . . . . . 12 (𝑟 = ∅ → 𝑟 = ∅)
30 uni0 4935 . . . . . . . . . . . 12 ∅ = ∅
3129, 30eqtrdi 2793 . . . . . . . . . . 11 (𝑟 = ∅ → 𝑟 = ∅)
3231eqeq1d 2739 . . . . . . . . . 10 (𝑟 = ∅ → ( 𝑟 = 𝑎 ↔ ∅ = 𝑎))
3328, 32anbi12d 632 . . . . . . . . 9 (𝑟 = ∅ → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ (𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎)))
3433imbi1d 341 . . . . . . . 8 (𝑟 = ∅ → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
35342albidv 1923 . . . . . . 7 (𝑟 = ∅ → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)))
36 raleq 3323 . . . . . . . . . . . 12 (𝑟 = 𝑡 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn))
3736anbi2d 630 . . . . . . . . . . 11 (𝑟 = 𝑡 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn)))
38 unieq 4918 . . . . . . . . . . . 12 (𝑟 = 𝑡 𝑟 = 𝑡)
3938eqeq1d 2739 . . . . . . . . . . 11 (𝑟 = 𝑡 → ( 𝑟 = 𝑎 𝑡 = 𝑎))
4037, 39anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑡 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎)))
4140imbi1d 341 . . . . . . . . 9 (𝑟 = 𝑡 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
42412albidv 1923 . . . . . . . 8 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn)))
43 simpl 482 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑓 = 𝑔)
44 simpr 484 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → 𝑎 = 𝑏)
4543, 44feq12d 6724 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓:𝑎⟶ℂ ↔ 𝑔:𝑏⟶ℂ))
46 reseq1 5991 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑠) = (𝑔𝑠))
4746adantr 480 . . . . . . . . . . . . . 14 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓𝑠) = (𝑔𝑠))
4847eleq1d 2826 . . . . . . . . . . . . 13 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓𝑠) ∈ MblFn ↔ (𝑔𝑠) ∈ MblFn))
4948ralbidv 3178 . . . . . . . . . . . 12 ((𝑓 = 𝑔𝑎 = 𝑏) → (∀𝑠𝑡 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn))
5045, 49anbi12d 632 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ↔ (𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn)))
51 eqeq2 2749 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5251adantl 481 . . . . . . . . . . 11 ((𝑓 = 𝑔𝑎 = 𝑏) → ( 𝑡 = 𝑎 𝑡 = 𝑏))
5350, 52anbi12d 632 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
54 eleq1 2829 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5554adantr 480 . . . . . . . . . 10 ((𝑓 = 𝑔𝑎 = 𝑏) → (𝑓 ∈ MblFn ↔ 𝑔 ∈ MblFn))
5653, 55imbi12d 344 . . . . . . . . 9 ((𝑓 = 𝑔𝑎 = 𝑏) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
5756cbval2vw 2039 . . . . . . . 8 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑡 (𝑓𝑠) ∈ MblFn) ∧ 𝑡 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn))
5842, 57bitrdi 287 . . . . . . 7 (𝑟 = 𝑡 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn)))
59 raleq 3323 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn))
6059anbi2d 630 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn)))
61 unieq 4918 . . . . . . . . . . 11 (𝑟 = (𝑡 ∪ {}) → 𝑟 = (𝑡 ∪ {}))
6261eqeq1d 2739 . . . . . . . . . 10 (𝑟 = (𝑡 ∪ {}) → ( 𝑟 = 𝑎 (𝑡 ∪ {}) = 𝑎))
6360, 62anbi12d 632 . . . . . . . . 9 (𝑟 = (𝑡 ∪ {}) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)))
6463imbi1d 341 . . . . . . . 8 (𝑟 = (𝑡 ∪ {}) → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
65642albidv 1923 . . . . . . 7 (𝑟 = (𝑡 ∪ {}) → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
66 raleq 3323 . . . . . . . . . . 11 (𝑟 = 𝑆 → (∀𝑠𝑟 (𝑓𝑠) ∈ MblFn ↔ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn))
6766anbi2d 630 . . . . . . . . . 10 (𝑟 = 𝑆 → ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ↔ (𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn)))
68 unieq 4918 . . . . . . . . . . 11 (𝑟 = 𝑆 𝑟 = 𝑆)
6968eqeq1d 2739 . . . . . . . . . 10 (𝑟 = 𝑆 → ( 𝑟 = 𝑎 𝑆 = 𝑎))
7067, 69anbi12d 632 . . . . . . . . 9 (𝑟 = 𝑆 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) ↔ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎)))
7170imbi1d 341 . . . . . . . 8 (𝑟 = 𝑆 → ((((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
72712albidv 1923 . . . . . . 7 (𝑟 = 𝑆 → (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑟 (𝑓𝑠) ∈ MblFn) ∧ 𝑟 = 𝑎) → 𝑓 ∈ MblFn) ↔ ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn)))
73 frel 6741 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → Rel 𝑓)
7473adantr 480 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → Rel 𝑓)
75 fdm 6745 . . . . . . . . . 10 (𝑓:𝑎⟶ℂ → dom 𝑓 = 𝑎)
76 eqcom 2744 . . . . . . . . . . 11 (∅ = 𝑎𝑎 = ∅)
7776biimpi 216 . . . . . . . . . 10 (∅ = 𝑎𝑎 = ∅)
7875, 77sylan9eq 2797 . . . . . . . . 9 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → dom 𝑓 = ∅)
79 reldm0 5938 . . . . . . . . . . 11 (Rel 𝑓 → (𝑓 = ∅ ↔ dom 𝑓 = ∅))
8079biimpar 477 . . . . . . . . . 10 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 = ∅)
81 mbf0 25669 . . . . . . . . . 10 ∅ ∈ MblFn
8280, 81eqeltrdi 2849 . . . . . . . . 9 ((Rel 𝑓 ∧ dom 𝑓 = ∅) → 𝑓 ∈ MblFn)
8374, 78, 82syl2anc 584 . . . . . . . 8 ((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
8483gen2 1796 . . . . . . 7 𝑓𝑎((𝑓:𝑎⟶ℂ ∧ ∅ = 𝑎) → 𝑓 ∈ MblFn)
85 ref 15151 . . . . . . . . . . . . . . 15 ℜ:ℂ⟶ℝ
86 fco 6760 . . . . . . . . . . . . . . 15 ((ℜ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8785, 86mpan 690 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8887adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
8988ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓):𝑎⟶ℝ)
90 recncf 24928 . . . . . . . . . . . . . . . . 17 ℜ ∈ (ℂ–cn→ℝ)
9190elexi 3503 . . . . . . . . . . . . . . . 16 ℜ ∈ V
92 vex 3484 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
9391, 92coex 7952 . . . . . . . . . . . . . . 15 (ℜ ∘ 𝑓) ∈ V
9493resex 6047 . . . . . . . . . . . . . 14 ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V
95 vuniex 7759 . . . . . . . . . . . . . 14 𝑡 ∈ V
96 eqcom 2744 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑡 𝑡 = 𝑏)
9796biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑡 𝑡 = 𝑏)
9897adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
9998biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
100 eqid 2737 . . . . . . . . . . . . . . . . . . 19 ℂ = ℂ
101 feq123 6726 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
102100, 101mp3an3 1452 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
103 reseq1 5991 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
104103eleq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
105104adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
106105ralbidv 3178 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
107102, 106anbi12d 632 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
10899, 107bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
109 eleq1 2829 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
110109adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
111108, 110imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℜ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
112111spc2gv 3600 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
11394, 95, 112mp2an 692 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
114 ax-resscn 11212 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
115 fss 6752 . . . . . . . . . . . . . . . . . 18 ((ℜ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℜ:ℂ⟶ℂ)
11685, 114, 115mp2an 692 . . . . . . . . . . . . . . . . 17 ℜ:ℂ⟶ℂ
117 fco 6760 . . . . . . . . . . . . . . . . 17 ((ℜ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℜ ∘ 𝑓):𝑎⟶ℂ)
118116, 117mpan 690 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℜ ∘ 𝑓):𝑎⟶ℂ)
119 ssun1 4178 . . . . . . . . . . . . . . . . . 18 𝑡 ⊆ (𝑡 ∪ {})
120119unissi 4916 . . . . . . . . . . . . . . . . 17 𝑡 (𝑡 ∪ {})
121 id 22 . . . . . . . . . . . . . . . . 17 ( (𝑡 ∪ {}) = 𝑎 (𝑡 ∪ {}) = 𝑎)
122120, 121sseqtrid 4026 . . . . . . . . . . . . . . . 16 ( (𝑡 ∪ {}) = 𝑎 𝑡𝑎)
123 fssres 6774 . . . . . . . . . . . . . . . 16 (((ℜ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
124118, 122, 123syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
125124adantlr 715 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
126 elssuni 4937 . . . . . . . . . . . . . . . . . . . . 21 (𝑟𝑡𝑟 𝑡)
127126resabs1d 6026 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℜ ∘ 𝑓) ↾ 𝑟))
128 resco 6270 . . . . . . . . . . . . . . . . . . . 20 ((ℜ ∘ 𝑓) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟))
129127, 128eqtrdi 2793 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
130129adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℜ ∘ (𝑓𝑟)))
131 elun1 4182 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟𝑡𝑟 ∈ (𝑡 ∪ {}))
132 reseq2 5992 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑟 → (𝑓𝑠) = (𝑓𝑟))
133132eleq1d 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑟 → ((𝑓𝑠) ∈ MblFn ↔ (𝑓𝑟) ∈ MblFn))
134133rspccva 3621 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟 ∈ (𝑡 ∪ {})) → (𝑓𝑟) ∈ MblFn)
135131, 134sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
136135adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (𝑓𝑟) ∈ MblFn)
137 fresin 6777 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑎⟶ℂ → (𝑓𝑟):(𝑎𝑟)⟶ℂ)
138 ismbfcn 25664 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑟):(𝑎𝑟)⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn ↔ ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
140139biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 (𝑓:𝑎⟶ℂ → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
141140ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((𝑓𝑟) ∈ MblFn → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn)))
142136, 141mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → ((ℜ ∘ (𝑓𝑟)) ∈ MblFn ∧ (ℑ ∘ (𝑓𝑟)) ∈ MblFn))
143142simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℜ ∘ (𝑓𝑟)) ∈ MblFn)
144130, 143eqeltrd 2841 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
145144ralrimiva 3146 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
146 reseq2 5992 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
147146eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
148147cbvralvw 3237 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
149145, 148sylib 218 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
150149adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
151 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
152125, 150, 151syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℜ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℜ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
153113, 152mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
154 vsnid 4663 . . . . . . . . . . . . . . 15 ∈ {}
155 elun2 4183 . . . . . . . . . . . . . . 15 ( ∈ {} → ∈ (𝑡 ∪ {}))
156 reseq2 5992 . . . . . . . . . . . . . . . . 17 (𝑠 = → (𝑓𝑠) = (𝑓))
157156eleq1d 2826 . . . . . . . . . . . . . . . 16 (𝑠 = → ((𝑓𝑠) ∈ MblFn ↔ (𝑓) ∈ MblFn))
158157rspcv 3618 . . . . . . . . . . . . . . 15 ( ∈ (𝑡 ∪ {}) → (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn))
159154, 155, 158mp2b 10 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn → (𝑓) ∈ MblFn)
160 resco 6270 . . . . . . . . . . . . . . 15 ((ℜ ∘ 𝑓) ↾ ) = (ℜ ∘ (𝑓))
161 fresin 6777 . . . . . . . . . . . . . . . . 17 (𝑓:𝑎⟶ℂ → (𝑓):(𝑎)⟶ℂ)
162 ismbfcn 25664 . . . . . . . . . . . . . . . . 17 ((𝑓):(𝑎)⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
163161, 162syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → ((𝑓) ∈ MblFn ↔ ((ℜ ∘ (𝑓)) ∈ MblFn ∧ (ℑ ∘ (𝑓)) ∈ MblFn)))
164163simprbda 498 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℜ ∘ (𝑓)) ∈ MblFn)
165160, 164eqeltrid 2845 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
166159, 165sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
167166ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℜ ∘ 𝑓) ↾ ) ∈ MblFn)
168 uniun 4930 . . . . . . . . . . . . . . 15 (𝑡 ∪ {}) = ( 𝑡 {})
169 unisnv 4927 . . . . . . . . . . . . . . . 16 {} =
170169uneq2i 4165 . . . . . . . . . . . . . . 15 ( 𝑡 {}) = ( 𝑡)
171168, 170eqtri 2765 . . . . . . . . . . . . . 14 (𝑡 ∪ {}) = ( 𝑡)
172171, 121eqtr3id 2791 . . . . . . . . . . . . 13 ( (𝑡 ∪ {}) = 𝑎 → ( 𝑡) = 𝑎)
173172ad2antll 729 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ( 𝑡) = 𝑎)
17489, 153, 167, 173mbfres2 25680 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℜ ∘ 𝑓) ∈ MblFn)
175 imf 15152 . . . . . . . . . . . . . . 15 ℑ:ℂ⟶ℝ
176 fco 6760 . . . . . . . . . . . . . . 15 ((ℑ:ℂ⟶ℝ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
177175, 176mpan 690 . . . . . . . . . . . . . 14 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℝ)
178177adantr 480 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
179178ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓):𝑎⟶ℝ)
180 imcncf 24929 . . . . . . . . . . . . . . . . 17 ℑ ∈ (ℂ–cn→ℝ)
181180elexi 3503 . . . . . . . . . . . . . . . 16 ℑ ∈ V
182181, 92coex 7952 . . . . . . . . . . . . . . 15 (ℑ ∘ 𝑓) ∈ V
183182resex 6047 . . . . . . . . . . . . . 14 ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V
18497adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → 𝑡 = 𝑏)
185184biantrud 531 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏)))
186 feq123 6726 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡 ∧ ℂ = ℂ) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
187100, 186mp3an3 1452 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔:𝑏⟶ℂ ↔ ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ))
188 reseq1 5991 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔𝑠) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
189188eleq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
190189adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔𝑠) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
191190ralbidv 3178 . . . . . . . . . . . . . . . . . 18 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (∀𝑠𝑡 (𝑔𝑠) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
192187, 191anbi12d 632 . . . . . . . . . . . . . . . . 17 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
193185, 192bitr3d 281 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) ↔ (((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)))
194 eleq1 2829 . . . . . . . . . . . . . . . . 17 (𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
195194adantr 480 . . . . . . . . . . . . . . . 16 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → (𝑔 ∈ MblFn ↔ ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
196193, 195imbi12d 344 . . . . . . . . . . . . . . 15 ((𝑔 = ((ℑ ∘ 𝑓) ↾ 𝑡) ∧ 𝑏 = 𝑡) → ((((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ↔ ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
197196spc2gv 3600 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡) ∈ V ∧ 𝑡 ∈ V) → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)))
198183, 95, 197mp2an 692 . . . . . . . . . . . . 13 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
199 fss 6752 . . . . . . . . . . . . . . . . . 18 ((ℑ:ℂ⟶ℝ ∧ ℝ ⊆ ℂ) → ℑ:ℂ⟶ℂ)
200175, 114, 199mp2an 692 . . . . . . . . . . . . . . . . 17 ℑ:ℂ⟶ℂ
201 fco 6760 . . . . . . . . . . . . . . . . 17 ((ℑ:ℂ⟶ℂ ∧ 𝑓:𝑎⟶ℂ) → (ℑ ∘ 𝑓):𝑎⟶ℂ)
202200, 201mpan 690 . . . . . . . . . . . . . . . 16 (𝑓:𝑎⟶ℂ → (ℑ ∘ 𝑓):𝑎⟶ℂ)
203 fssres 6774 . . . . . . . . . . . . . . . 16 (((ℑ ∘ 𝑓):𝑎⟶ℂ ∧ 𝑡𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
204202, 122, 203syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
205204adantlr 715 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ)
206126resabs1d 6026 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = ((ℑ ∘ 𝑓) ↾ 𝑟))
207 resco 6270 . . . . . . . . . . . . . . . . . . . 20 ((ℑ ∘ 𝑓) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟))
208206, 207eqtrdi 2793 . . . . . . . . . . . . . . . . . . 19 (𝑟𝑡 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
209208adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (ℑ ∘ (𝑓𝑟)))
210142simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (ℑ ∘ (𝑓𝑟)) ∈ MblFn)
211209, 210eqeltrd 2841 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ 𝑟𝑡) → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
212211ralrimiva 3146 . . . . . . . . . . . . . . . 16 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn)
213 reseq2 5992 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) = (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠))
214213eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn))
215214cbvralvw 3237 . . . . . . . . . . . . . . . 16 (∀𝑟𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑟) ∈ MblFn ↔ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
216212, 215sylib 218 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
217216adantr 480 . . . . . . . . . . . . . 14 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn)
218 pm2.27 42 . . . . . . . . . . . . . 14 ((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
219205, 217, 218syl2anc 584 . . . . . . . . . . . . 13 (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → (((((ℑ ∘ 𝑓) ↾ 𝑡): 𝑡⟶ℂ ∧ ∀𝑠𝑡 (((ℑ ∘ 𝑓) ↾ 𝑡) ↾ 𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn))
220198, 219mpan9 506 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ 𝑡) ∈ MblFn)
221 resco 6270 . . . . . . . . . . . . . . 15 ((ℑ ∘ 𝑓) ↾ ) = (ℑ ∘ (𝑓))
222163simplbda 499 . . . . . . . . . . . . . . 15 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → (ℑ ∘ (𝑓)) ∈ MblFn)
223221, 222eqeltrid 2845 . . . . . . . . . . . . . 14 ((𝑓:𝑎⟶ℂ ∧ (𝑓) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
224159, 223sylan2 593 . . . . . . . . . . . . 13 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
225224ad2antrl 728 . . . . . . . . . . . 12 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → ((ℑ ∘ 𝑓) ↾ ) ∈ MblFn)
226179, 220, 225, 173mbfres2 25680 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (ℑ ∘ 𝑓) ∈ MblFn)
227 ismbfcn 25664 . . . . . . . . . . . . 13 (𝑓:𝑎⟶ℂ → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
228227adantr 480 . . . . . . . . . . . 12 ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
229228ad2antrl 728 . . . . . . . . . . 11 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → (𝑓 ∈ MblFn ↔ ((ℜ ∘ 𝑓) ∈ MblFn ∧ (ℑ ∘ 𝑓) ∈ MblFn)))
230174, 226, 229mpbir2and 713 . . . . . . . . . 10 ((∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) ∧ ((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎)) → 𝑓 ∈ MblFn)
231230ex 412 . . . . . . . . 9 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
232231alrimivv 1928 . . . . . . . 8 (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn))
233232a1i 11 . . . . . . 7 (𝑡 ∈ Fin → (∀𝑔𝑏(((𝑔:𝑏⟶ℂ ∧ ∀𝑠𝑡 (𝑔𝑠) ∈ MblFn) ∧ 𝑡 = 𝑏) → 𝑔 ∈ MblFn) → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠 ∈ (𝑡 ∪ {})(𝑓𝑠) ∈ MblFn) ∧ (𝑡 ∪ {}) = 𝑎) → 𝑓 ∈ MblFn)))
23435, 58, 65, 72, 84, 233findcard2 9204 . . . . . 6 (𝑆 ∈ Fin → ∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
235 2sp 2186 . . . . . 6 (∀𝑓𝑎(((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn) → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
2364, 234, 2353syl 18 . . . . 5 (𝜑 → (((𝑓:𝑎⟶ℂ ∧ ∀𝑠𝑆 (𝑓𝑠) ∈ MblFn) ∧ 𝑆 = 𝑎) → 𝑓 ∈ MblFn))
23716, 25, 236vtocl2g 3574 . . . 4 ((𝐴 ∈ V ∧ 𝐹 ∈ V) → (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn)))
23810, 237mpcom 38 . . 3 (𝜑 → (((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) ∧ 𝑆 = 𝐴) → 𝐹 ∈ MblFn))
2393, 238mpan2d 694 . 2 (𝜑 → ((𝐹:𝐴⟶ℂ ∧ ∀𝑠𝑆 (𝐹𝑠) ∈ MblFn) → 𝐹 ∈ MblFn))
2401, 2, 239mp2and 699 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626   cuni 4907  dom cdm 5685  cres 5687  ccom 5689  Rel wrel 5690  wf 6557  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  cre 15136  cim 15137  cnccncf 24902  MblFncmbf 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator