MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem15 Structured version   Visualization version   GIF version

Theorem frrlem15 9795
Description: Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypotheses
Ref Expression
frrlem15.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem15.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem15 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑅,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑓,𝐺,𝑥,𝑦,𝑔,,𝑢,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)

Proof of Theorem frrlem15
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑥 ∈ V
2 vex 3482 . . . . . 6 𝑢 ∈ V
31, 2breldm 5922 . . . . 5 (𝑥𝑔𝑢𝑥 ∈ dom 𝑔)
43adantr 480 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ dom 𝑔)
5 vex 3482 . . . . . 6 𝑣 ∈ V
61, 5breldm 5922 . . . . 5 (𝑥𝑣𝑥 ∈ dom )
76adantl 481 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ dom )
84, 7elind 4210 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
9 id 22 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥𝑔𝑢𝑥𝑣))
102brresi 6009 . . . . 5 (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢))
115brresi 6009 . . . . 5 (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣))
1210, 11anbi12i 628 . . . 4 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)))
13 an4 656 . . . 4 (((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
1412, 13bitri 275 . . 3 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
158, 8, 9, 14syl21anbrc 1343 . 2 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
16 inss1 4245 . . . . . . . . 9 (dom 𝑔 ∩ dom ) ⊆ dom 𝑔
17 frrlem15.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1817frrlem3 8312 . . . . . . . . 9 (𝑔𝐵 → dom 𝑔𝐴)
1916, 18sstrid 4007 . . . . . . . 8 (𝑔𝐵 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2019ad2antrl 728 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
21 simpll 767 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr 𝐴)
22 frss 5653 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Fr 𝐴𝑅 Fr (dom 𝑔 ∩ dom )))
2320, 21, 22sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr (dom 𝑔 ∩ dom ))
24 simplr 769 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se 𝐴)
25 sess2 5655 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Se 𝐴𝑅 Se (dom 𝑔 ∩ dom )))
2620, 24, 25sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se (dom 𝑔 ∩ dom ))
2717frrlem4 8313 . . . . . . 7 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2827adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2917frrlem4 8313 . . . . . . . . 9 ((𝐵𝑔𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
30 incom 4217 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)
3130reseq2i 5997 . . . . . . . . . . 11 ( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔))
32 fneq12 6665 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔)) ∧ (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔)))
3331, 30, 32mp2an 692 . . . . . . . . . 10 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3431fveq1i 6908 . . . . . . . . . . . 12 (( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (( ↾ (dom ∩ dom 𝑔))‘𝑎)
35 predeq2 6326 . . . . . . . . . . . . . . 15 ((dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3630, 35ax-mp 5 . . . . . . . . . . . . . 14 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)
3731, 36reseq12i 5998 . . . . . . . . . . . . 13 (( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3837oveq2i 7442 . . . . . . . . . . . 12 (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))
3934, 38eqeq12i 2753 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ (( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4030, 39raleqbii 3342 . . . . . . . . . 10 (∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4133, 40anbi12i 628 . . . . . . . . 9 ((( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ↔ (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
4229, 41sylibr 234 . . . . . . . 8 ((𝐵𝑔𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4342ancoms 458 . . . . . . 7 ((𝑔𝐵𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4443adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
45 frr3g 9794 . . . . . 6 (((𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ∧ (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4623, 26, 28, 44, 45syl211anc 1375 . . . . 5 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4746breqd 5159 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
4847biimprd 248 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣))
4917frrlem2 8311 . . . . . 6 (𝑔𝐵 → Fun 𝑔)
5049funresd 6611 . . . . 5 (𝑔𝐵 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
5150ad2antrl 728 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
52 dffun2 6573 . . . . 5 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom )) ∧ ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣)))
53 2sp 2184 . . . . . 6 (∀𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5453sps 2183 . . . . 5 (∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5552, 54simplbiim 504 . . . 4 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5651, 55syl 17 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5748, 56sylan2d 605 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5815, 57syl5 34 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wral 3059  cin 3962  wss 3963   class class class wbr 5148   Fr wfr 5638   Se wse 5639  dom cdm 5689  cres 5691  Rel wrel 5694  Predcpred 6322  Fun wfun 6557   Fn wfn 6558  cfv 6563  (class class class)co 7431  frecscfrecs 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-ttrcl 9746
This theorem is referenced by:  frr1  9797  frr2  9798
  Copyright terms: Public domain W3C validator