MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem15 Structured version   Visualization version   GIF version

Theorem frrlem15 9826
Description: Lemma for general well-founded recursion. Two acceptable functions are compatible. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypotheses
Ref Expression
frrlem15.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem15.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem15 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑅,𝑓,𝑥,𝑦,𝑔,,𝑢,𝑣   𝑓,𝐺,𝑥,𝑦,𝑔,,𝑢,𝑣
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)   𝐹(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)

Proof of Theorem frrlem15
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . 6 𝑥 ∈ V
2 vex 3492 . . . . . 6 𝑢 ∈ V
31, 2breldm 5933 . . . . 5 (𝑥𝑔𝑢𝑥 ∈ dom 𝑔)
43adantr 480 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ dom 𝑔)
5 vex 3492 . . . . . 6 𝑣 ∈ V
61, 5breldm 5933 . . . . 5 (𝑥𝑣𝑥 ∈ dom )
76adantl 481 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ dom )
84, 7elind 4223 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
9 id 22 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥𝑔𝑢𝑥𝑣))
102brresi 6018 . . . . 5 (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢))
115brresi 6018 . . . . 5 (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣))
1210, 11anbi12i 627 . . . 4 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)))
13 an4 655 . . . 4 (((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
1412, 13bitri 275 . . 3 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom )) ∧ (𝑥𝑔𝑢𝑥𝑣)))
158, 8, 9, 14syl21anbrc 1344 . 2 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
16 inss1 4258 . . . . . . . . 9 (dom 𝑔 ∩ dom ) ⊆ dom 𝑔
17 frrlem15.1 . . . . . . . . . 10 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1817frrlem3 8329 . . . . . . . . 9 (𝑔𝐵 → dom 𝑔𝐴)
1916, 18sstrid 4020 . . . . . . . 8 (𝑔𝐵 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
2019ad2antrl 727 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
21 simpll 766 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr 𝐴)
22 frss 5664 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Fr 𝐴𝑅 Fr (dom 𝑔 ∩ dom )))
2320, 21, 22sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Fr (dom 𝑔 ∩ dom ))
24 simplr 768 . . . . . . 7 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se 𝐴)
25 sess2 5666 . . . . . . 7 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Se 𝐴𝑅 Se (dom 𝑔 ∩ dom )))
2620, 24, 25sylc 65 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → 𝑅 Se (dom 𝑔 ∩ dom ))
2717frrlem4 8330 . . . . . . 7 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2827adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2917frrlem4 8330 . . . . . . . . 9 ((𝐵𝑔𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
30 incom 4230 . . . . . . . . . . . 12 (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)
3130reseq2i 6006 . . . . . . . . . . 11 ( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔))
32 fneq12 6675 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔)) ∧ (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔)))
3331, 30, 32mp2an 691 . . . . . . . . . 10 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3431fveq1i 6921 . . . . . . . . . . . 12 (( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (( ↾ (dom ∩ dom 𝑔))‘𝑎)
35 predeq2 6335 . . . . . . . . . . . . . . 15 ((dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3630, 35ax-mp 5 . . . . . . . . . . . . . 14 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)
3731, 36reseq12i 6007 . . . . . . . . . . . . 13 (( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3837oveq2i 7459 . . . . . . . . . . . 12 (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))
3934, 38eqeq12i 2758 . . . . . . . . . . 11 ((( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ (( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4030, 39raleqbii 3352 . . . . . . . . . 10 (∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4133, 40anbi12i 627 . . . . . . . . 9 ((( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ↔ (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝑎𝐺(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
4229, 41sylibr 234 . . . . . . . 8 ((𝐵𝑔𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4342ancoms 458 . . . . . . 7 ((𝑔𝐵𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
4443adantl 481 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
45 frr3g 9825 . . . . . 6 (((𝑅 Fr (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ∧ (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝑎𝐺(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4623, 26, 28, 44, 45syl211anc 1376 . . . . 5 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4746breqd 5177 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
4847biimprd 248 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣))
4917frrlem2 8328 . . . . . 6 (𝑔𝐵 → Fun 𝑔)
5049funresd 6621 . . . . 5 (𝑔𝐵 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
5150ad2antrl 727 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
52 dffun2 6583 . . . . 5 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom )) ∧ ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣)))
53 2sp 2187 . . . . . 6 (∀𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5453sps 2186 . . . . 5 (∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5552, 54simplbiim 504 . . . 4 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5651, 55syl 17 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5748, 56sylan2d 604 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5815, 57syl5 34 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔𝐵𝐵)) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  cin 3975  wss 3976   class class class wbr 5166   Fr wfr 5649   Se wse 5650  dom cdm 5700  cres 5702  Rel wrel 5705  Predcpred 6331  Fun wfun 6567   Fn wfn 6568  cfv 6573  (class class class)co 7448  frecscfrecs 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by:  frr1  9828  frr2  9829
  Copyright terms: Public domain W3C validator