| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3483 | . . . . . 6
⊢ 𝑥 ∈ V | 
| 2 |  | vex 3483 | . . . . . 6
⊢ 𝑢 ∈ V | 
| 3 | 1, 2 | breldm 5918 | . . . . 5
⊢ (𝑥𝑔𝑢 → 𝑥 ∈ dom 𝑔) | 
| 4 | 3 | adantr 480 | . . . 4
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ dom 𝑔) | 
| 5 |  | vex 3483 | . . . . . 6
⊢ 𝑣 ∈ V | 
| 6 | 1, 5 | breldm 5918 | . . . . 5
⊢ (𝑥ℎ𝑣 → 𝑥 ∈ dom ℎ) | 
| 7 | 6 | adantl 481 | . . . 4
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ dom ℎ) | 
| 8 | 4, 7 | elind 4199 | . . 3
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) | 
| 9 |  | id 22 | . . 3
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) | 
| 10 | 2 | brresi 6005 | . . . . 5
⊢ (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢)) | 
| 11 | 5 | brresi 6005 | . . . . 5
⊢ (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣)) | 
| 12 | 10, 11 | anbi12i 628 | . . . 4
⊢ ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣))) | 
| 13 |  | an4 656 | . . . 4
⊢ (((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣))) | 
| 14 | 12, 13 | bitri 275 | . . 3
⊢ ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣))) | 
| 15 | 8, 8, 9, 14 | syl21anbrc 1344 | . 2
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) | 
| 16 |  | inss1 4236 | . . . . . . . . 9
⊢ (dom
𝑔 ∩ dom ℎ) ⊆ dom 𝑔 | 
| 17 |  | frrlem15.1 | . . . . . . . . . 10
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | 
| 18 | 17 | frrlem3 8314 | . . . . . . . . 9
⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) | 
| 19 | 16, 18 | sstrid 3994 | . . . . . . . 8
⊢ (𝑔 ∈ 𝐵 → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) | 
| 20 | 19 | ad2antrl 728 | . . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) | 
| 21 |  | simpll 766 | . . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Fr 𝐴) | 
| 22 |  | frss 5648 | . . . . . . 7
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Fr 𝐴 → 𝑅 Fr (dom 𝑔 ∩ dom ℎ))) | 
| 23 | 20, 21, 22 | sylc 65 | . . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Fr (dom 𝑔 ∩ dom ℎ)) | 
| 24 |  | simplr 768 | . . . . . . 7
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Se 𝐴) | 
| 25 |  | sess2 5650 | . . . . . . 7
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Se 𝐴 → 𝑅 Se (dom 𝑔 ∩ dom ℎ))) | 
| 26 | 20, 24, 25 | sylc 65 | . . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → 𝑅 Se (dom 𝑔 ∩ dom ℎ)) | 
| 27 | 17 | frrlem4 8315 | . . . . . . 7
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | 
| 28 | 27 | adantl 481 | . . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | 
| 29 | 17 | frrlem4 8315 | . . . . . . . . 9
⊢ ((ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) | 
| 30 |  | incom 4208 | . . . . . . . . . . . 12
⊢ (dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) | 
| 31 | 30 | reseq2i 5993 | . . . . . . . . . . 11
⊢ (ℎ ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom ℎ ∩ dom 𝑔)) | 
| 32 |  | fneq12 6663 | . . . . . . . . . . 11
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom ℎ ∩ dom 𝑔)) ∧ (dom 𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔)) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔))) | 
| 33 | 31, 30, 32 | mp2an 692 | . . . . . . . . . 10
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔)) | 
| 34 | 31 | fveq1i 6906 | . . . . . . . . . . . 12
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) | 
| 35 |  | predeq2 6323 | . . . . . . . . . . . . . . 15
⊢ ((dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) | 
| 36 | 30, 35 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎) | 
| 37 | 31, 36 | reseq12i 5994 | . . . . . . . . . . . . 13
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) | 
| 38 | 37 | oveq2i 7443 | . . . . . . . . . . . 12
⊢ (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))) | 
| 39 | 34, 38 | eqeq12i 2754 | . . . . . . . . . . 11
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) | 
| 40 | 30, 39 | raleqbii 3343 | . . . . . . . . . 10
⊢
(∀𝑎 ∈
(dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) | 
| 41 | 33, 40 | anbi12i 628 | . . . . . . . . 9
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) | 
| 42 | 29, 41 | sylibr 234 | . . . . . . . 8
⊢ ((ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | 
| 43 | 42 | ancoms 458 | . . . . . . 7
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | 
| 44 | 43 | adantl 481 | . . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) | 
| 45 |  | frr3g 9797 | . . . . . 6
⊢ (((𝑅 Fr (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ)) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ∧ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) | 
| 46 | 23, 26, 28, 44, 45 | syl211anc 1377 | . . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) | 
| 47 | 46 | breqd 5153 | . . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) | 
| 48 | 47 | biimprd 248 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 → 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) | 
| 49 | 17 | frrlem2 8313 | . . . . . 6
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) | 
| 50 | 49 | funresd 6608 | . . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom ℎ))) | 
| 51 | 50 | ad2antrl 728 | . . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → Fun (𝑔 ↾ (dom 𝑔 ∩ dom ℎ))) | 
| 52 |  | dffun2 6570 | . . . . 5
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ∧ ∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣))) | 
| 53 |  | 2sp 2185 | . . . . . 6
⊢
(∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) | 
| 54 | 53 | sps 2184 | . . . . 5
⊢
(∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) | 
| 55 | 52, 54 | simplbiim 504 | . . . 4
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) | 
| 56 | 51, 55 | syl 17 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) | 
| 57 | 48, 56 | sylan2d 605 | . 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) | 
| 58 | 15, 57 | syl5 34 | 1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵)) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |