Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . . 6
⊢ 𝑥 ∈ V |
2 | | vex 3436 |
. . . . . 6
⊢ 𝑢 ∈ V |
3 | 1, 2 | breldm 5817 |
. . . . 5
⊢ (𝑥𝑔𝑢 → 𝑥 ∈ dom 𝑔) |
4 | | vex 3436 |
. . . . . 6
⊢ 𝑣 ∈ V |
5 | 1, 4 | breldm 5817 |
. . . . 5
⊢ (𝑥ℎ𝑣 → 𝑥 ∈ dom ℎ) |
6 | 3, 5 | anim12i 613 |
. . . 4
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ)) |
7 | | elin 3903 |
. . . 4
⊢ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ↔ (𝑥 ∈ dom 𝑔 ∧ 𝑥 ∈ dom ℎ)) |
8 | 6, 7 | sylibr 233 |
. . 3
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ℎ)) |
9 | | anandi 673 |
. . . 4
⊢ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣))) |
10 | 2 | brresi 5900 |
. . . . 5
⊢ (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢)) |
11 | 4 | brresi 5900 |
. . . . 5
⊢ (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣)) |
12 | 10, 11 | anbi12i 627 |
. . . 4
⊢ ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ 𝑥ℎ𝑣))) |
13 | 9, 12 | sylbb2 237 |
. . 3
⊢ ((𝑥 ∈ (dom 𝑔 ∩ dom ℎ) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
14 | 8, 13 | mpancom 685 |
. 2
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
15 | | wfrlem5OLD.3 |
. . . . . . . . 9
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
16 | 15 | wfrlem3OLD 8141 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐵 → dom 𝑔 ⊆ 𝐴) |
17 | | ssinss1 4171 |
. . . . . . . 8
⊢ (dom
𝑔 ⊆ 𝐴 → (dom 𝑔 ∩ dom ℎ) ⊆ 𝐴) |
18 | | wfrlem5OLD.1 |
. . . . . . . . . 10
⊢ 𝑅 We 𝐴 |
19 | | wess 5576 |
. . . . . . . . . 10
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 We 𝐴 → 𝑅 We (dom 𝑔 ∩ dom ℎ))) |
20 | 18, 19 | mpi 20 |
. . . . . . . . 9
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → 𝑅 We (dom 𝑔 ∩ dom ℎ)) |
21 | | wfrlem5OLD.2 |
. . . . . . . . . 10
⊢ 𝑅 Se 𝐴 |
22 | | sess2 5558 |
. . . . . . . . . 10
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 Se 𝐴 → 𝑅 Se (dom 𝑔 ∩ dom ℎ))) |
23 | 21, 22 | mpi 20 |
. . . . . . . . 9
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → 𝑅 Se (dom 𝑔 ∩ dom ℎ)) |
24 | 20, 23 | jca 512 |
. . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 → (𝑅 We (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ))) |
25 | 16, 17, 24 | 3syl 18 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 → (𝑅 We (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ))) |
26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑅 We (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ))) |
27 | 15 | wfrlem4OLD 8143 |
. . . . . 6
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
28 | 15 | wfrlem4OLD 8143 |
. . . . . . . 8
⊢ ((ℎ ∈ 𝐵 ∧ 𝑔 ∈ 𝐵) → ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) |
29 | 28 | ancoms 459 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) |
30 | | incom 4135 |
. . . . . . . . . . 11
⊢ (dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) |
31 | 30 | reseq2i 5888 |
. . . . . . . . . 10
⊢ (ℎ ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom ℎ ∩ dom 𝑔)) |
32 | 31 | fneq1i 6530 |
. . . . . . . . 9
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ℎ)) |
33 | 30 | fneq2i 6531 |
. . . . . . . . 9
⊢ ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔)) |
34 | 32, 33 | bitri 274 |
. . . . . . . 8
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ↔ (ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔)) |
35 | 31 | fveq1i 6775 |
. . . . . . . . . 10
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) |
36 | | predeq2 6205 |
. . . . . . . . . . . . 13
⊢ ((dom
𝑔 ∩ dom ℎ) = (dom ℎ ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) |
37 | 30, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎) |
38 | 31, 37 | reseq12i 5889 |
. . . . . . . . . . 11
⊢ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)) |
39 | 38 | fveq2i 6777 |
. . . . . . . . . 10
⊢ (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))) |
40 | 35, 39 | eqeq12i 2756 |
. . . . . . . . 9
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) |
41 | 30, 40 | raleqbii 3163 |
. . . . . . . 8
⊢
(∀𝑎 ∈
(dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) ↔ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎)))) |
42 | 34, 41 | anbi12i 627 |
. . . . . . 7
⊢ (((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ↔ ((ℎ ↾ (dom ℎ ∩ dom 𝑔)) Fn (dom ℎ ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ℎ ∩ dom 𝑔)((ℎ ↾ (dom ℎ ∩ dom 𝑔))‘𝑎) = (𝐹‘((ℎ ↾ (dom ℎ ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ℎ ∩ dom 𝑔), 𝑎))))) |
43 | 29, 42 | sylibr 233 |
. . . . . 6
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |
44 | | wfr3g 8138 |
. . . . . 6
⊢ (((𝑅 We (dom 𝑔 ∩ dom ℎ) ∧ 𝑅 Se (dom 𝑔 ∩ dom ℎ)) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) ∧ ((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((ℎ ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((ℎ ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
45 | 26, 27, 43, 44 | syl3anc 1370 |
. . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
46 | 45 | breqd 5085 |
. . . 4
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣 ↔ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
47 | 46 | biimprd 247 |
. . 3
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣 → 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣)) |
48 | 15 | wfrlem2OLD 8140 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
49 | | funres 6476 |
. . . . 5
⊢ (Fun
𝑔 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom ℎ))) |
50 | | dffun2 6443 |
. . . . . 6
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ∧ ∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣))) |
51 | 50 | simprbi 497 |
. . . . 5
⊢ (Fun
(𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) → ∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
52 | | 2sp 2179 |
. . . . . 6
⊢
(∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
53 | 52 | sps 2178 |
. . . . 5
⊢
(∀𝑥∀𝑢∀𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
54 | 48, 49, 51, 53 | 4syl 19 |
. . . 4
⊢ (𝑔 ∈ 𝐵 → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
55 | 54 | adantr 481 |
. . 3
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
56 | 47, 55 | sylan2d 605 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ℎ))𝑢 ∧ 𝑥(ℎ ↾ (dom 𝑔 ∩ dom ℎ))𝑣) → 𝑢 = 𝑣)) |
57 | 14, 56 | syl5 34 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |