MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem5OLD Structured version   Visualization version   GIF version

Theorem wfrlem5OLD 8115
Description: Lemma for well-ordered recursion. The values of two acceptable functions agree within their domains. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem5OLD.1 𝑅 We 𝐴
wfrlem5OLD.2 𝑅 Se 𝐴
wfrlem5OLD.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
Assertion
Ref Expression
wfrlem5OLD ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑦   𝑓,𝐹,𝑔,,𝑥,𝑦   𝑅,𝑓,𝑔,,𝑥,𝑦   𝑢,𝑔,𝑣,,𝑥
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑓,𝑔,)   𝑅(𝑣,𝑢)   𝐹(𝑣,𝑢)

Proof of Theorem wfrlem5OLD
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . 6 𝑥 ∈ V
2 vex 3426 . . . . . 6 𝑢 ∈ V
31, 2breldm 5806 . . . . 5 (𝑥𝑔𝑢𝑥 ∈ dom 𝑔)
4 vex 3426 . . . . . 6 𝑣 ∈ V
51, 4breldm 5806 . . . . 5 (𝑥𝑣𝑥 ∈ dom )
63, 5anim12i 612 . . . 4 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥 ∈ dom 𝑔𝑥 ∈ dom ))
7 elin 3899 . . . 4 (𝑥 ∈ (dom 𝑔 ∩ dom ) ↔ (𝑥 ∈ dom 𝑔𝑥 ∈ dom ))
86, 7sylibr 233 . . 3 ((𝑥𝑔𝑢𝑥𝑣) → 𝑥 ∈ (dom 𝑔 ∩ dom ))
9 anandi 672 . . . 4 ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ (𝑥𝑔𝑢𝑥𝑣)) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)))
102brresi 5889 . . . . 5 (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢))
114brresi 5889 . . . . 5 (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣 ↔ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣))
1210, 11anbi12i 626 . . . 4 ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) ↔ ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑔𝑢) ∧ (𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ 𝑥𝑣)))
139, 12sylbb2 237 . . 3 ((𝑥 ∈ (dom 𝑔 ∩ dom ) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
148, 13mpancom 684 . 2 ((𝑥𝑔𝑢𝑥𝑣) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
15 wfrlem5OLD.3 . . . . . . . . 9 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1615wfrlem3OLD 8112 . . . . . . . 8 (𝑔𝐵 → dom 𝑔𝐴)
17 ssinss1 4168 . . . . . . . 8 (dom 𝑔𝐴 → (dom 𝑔 ∩ dom ) ⊆ 𝐴)
18 wfrlem5OLD.1 . . . . . . . . . 10 𝑅 We 𝐴
19 wess 5567 . . . . . . . . . 10 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 We 𝐴𝑅 We (dom 𝑔 ∩ dom )))
2018, 19mpi 20 . . . . . . . . 9 ((dom 𝑔 ∩ dom ) ⊆ 𝐴𝑅 We (dom 𝑔 ∩ dom ))
21 wfrlem5OLD.2 . . . . . . . . . 10 𝑅 Se 𝐴
22 sess2 5549 . . . . . . . . . 10 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 Se 𝐴𝑅 Se (dom 𝑔 ∩ dom )))
2321, 22mpi 20 . . . . . . . . 9 ((dom 𝑔 ∩ dom ) ⊆ 𝐴𝑅 Se (dom 𝑔 ∩ dom ))
2420, 23jca 511 . . . . . . . 8 ((dom 𝑔 ∩ dom ) ⊆ 𝐴 → (𝑅 We (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2516, 17, 243syl 18 . . . . . . 7 (𝑔𝐵 → (𝑅 We (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2625adantr 480 . . . . . 6 ((𝑔𝐵𝐵) → (𝑅 We (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )))
2715wfrlem4OLD 8114 . . . . . 6 ((𝑔𝐵𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
2815wfrlem4OLD 8114 . . . . . . . 8 ((𝐵𝑔𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
2928ancoms 458 . . . . . . 7 ((𝑔𝐵𝐵) → (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
30 incom 4131 . . . . . . . . . . 11 (dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔)
3130reseq2i 5877 . . . . . . . . . 10 ( ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom ∩ dom 𝑔))
3231fneq1i 6514 . . . . . . . . 9 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ))
3330fneq2i 6515 . . . . . . . . 9 (( ↾ (dom ∩ dom 𝑔)) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3432, 33bitri 274 . . . . . . . 8 (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ↔ ( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔))
3531fveq1i 6757 . . . . . . . . . 10 (( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (( ↾ (dom ∩ dom 𝑔))‘𝑎)
36 predeq2 6194 . . . . . . . . . . . . 13 ((dom 𝑔 ∩ dom ) = (dom ∩ dom 𝑔) → Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3730, 36ax-mp 5 . . . . . . . . . . . 12 Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎) = Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)
3831, 37reseq12i 5878 . . . . . . . . . . 11 (( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)) = (( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))
3938fveq2i 6759 . . . . . . . . . 10 (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))
4035, 39eqeq12i 2756 . . . . . . . . 9 ((( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ (( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4130, 40raleqbii 3160 . . . . . . . 8 (∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))) ↔ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎))))
4234, 41anbi12i 626 . . . . . . 7 ((( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ↔ (( ↾ (dom ∩ dom 𝑔)) Fn (dom ∩ dom 𝑔) ∧ ∀𝑎 ∈ (dom ∩ dom 𝑔)(( ↾ (dom ∩ dom 𝑔))‘𝑎) = (𝐹‘(( ↾ (dom ∩ dom 𝑔)) ↾ Pred(𝑅, (dom ∩ dom 𝑔), 𝑎)))))
4329, 42sylibr 233 . . . . . 6 ((𝑔𝐵𝐵) → (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))))
44 wfr3g 8109 . . . . . 6 (((𝑅 We (dom 𝑔 ∩ dom ) ∧ 𝑅 Se (dom 𝑔 ∩ dom )) ∧ ((𝑔 ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )((𝑔 ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎)))) ∧ (( ↾ (dom 𝑔 ∩ dom )) Fn (dom 𝑔 ∩ dom ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom )(( ↾ (dom 𝑔 ∩ dom ))‘𝑎) = (𝐹‘(( ↾ (dom 𝑔 ∩ dom )) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ), 𝑎))))) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4526, 27, 43, 44syl3anc 1369 . . . . 5 ((𝑔𝐵𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
4645breqd 5081 . . . 4 ((𝑔𝐵𝐵) → (𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣))
4746biimprd 247 . . 3 ((𝑔𝐵𝐵) → (𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣))
4815wfrlem2OLD 8111 . . . . 5 (𝑔𝐵 → Fun 𝑔)
49 funres 6460 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (dom 𝑔 ∩ dom )))
50 dffun2 6428 . . . . . 6 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) ↔ (Rel (𝑔 ↾ (dom 𝑔 ∩ dom )) ∧ ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣)))
5150simprbi 496 . . . . 5 (Fun (𝑔 ↾ (dom 𝑔 ∩ dom )) → ∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
52 2sp 2181 . . . . . 6 (∀𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5352sps 2180 . . . . 5 (∀𝑥𝑢𝑣((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5448, 49, 51, 534syl 19 . . . 4 (𝑔𝐵 → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5554adantr 480 . . 3 ((𝑔𝐵𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5647, 55sylan2d 604 . 2 ((𝑔𝐵𝐵) → ((𝑥(𝑔 ↾ (dom 𝑔 ∩ dom ))𝑢𝑥( ↾ (dom 𝑔 ∩ dom ))𝑣) → 𝑢 = 𝑣))
5714, 56syl5 34 1 ((𝑔𝐵𝐵) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  cin 3882  wss 3883   class class class wbr 5070   Se wse 5533   We wwe 5534  dom cdm 5580  cres 5582  Rel wrel 5585  Predcpred 6190  Fun wfun 6412   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  wfrfunOLD  8121
  Copyright terms: Public domain W3C validator