![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbie2t | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3950). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
csbie2t.1 | ⊢ 𝐴 ∈ V |
csbie2t.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
csbie2t | ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2149 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
2 | nfcvd 2904 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → Ⅎ𝑥𝐷) | |
3 | csbie2t.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3 | a1i 11 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 ∈ V) |
5 | nfa2 2174 | . . . 4 ⊢ Ⅎ𝑦∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | |
6 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
7 | 5, 6 | nfan 1897 | . . 3 ⊢ Ⅎ𝑦(∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) |
8 | nfcvd 2904 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝐷) | |
9 | csbie2t.2 | . . . 4 ⊢ 𝐵 ∈ V | |
10 | 9 | a1i 11 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
11 | 2sp 2184 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)) | |
12 | 11 | impl 455 | . . 3 ⊢ (((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
13 | 7, 8, 10, 12 | csbiedf 3939 | . 2 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → ⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
14 | 1, 2, 4, 13 | csbiedf 3939 | 1 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: csbie2 3950 |
Copyright terms: Public domain | W3C validator |