MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2t Structured version   Visualization version   GIF version

Theorem csbie2t 3846
Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3847). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1 𝐴 ∈ V
csbie2t.2 𝐵 ∈ V
Assertion
Ref Expression
csbie2t (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 2153 . 2 𝑥𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
2 nfcvd 2921 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝑥𝐷)
3 csbie2t.1 . . 3 𝐴 ∈ V
43a1i 11 . 2 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 ∈ V)
5 nfa2 2175 . . . 4 𝑦𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷)
6 nfv 1916 . . . 4 𝑦 𝑥 = 𝐴
75, 6nfan 1901 . . 3 𝑦(∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴)
8 nfcvd 2921 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝑦𝐷)
9 csbie2t.2 . . . 4 𝐵 ∈ V
109a1i 11 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 ∈ V)
11 2sp 2184 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷))
1211impl 459 . . 3 (((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
137, 8, 10, 12csbiedf 3838 . 2 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) ∧ 𝑥 = 𝐴) → 𝐵 / 𝑦𝐶 = 𝐷)
141, 2, 4, 13csbiedf 3838 1 (∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 = 𝐷) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1537   = wceq 1539  wcel 2112  Vcvv 3410  csb 3808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-v 3412  df-sbc 3700  df-csb 3809
This theorem is referenced by:  csbie2  3847
  Copyright terms: Public domain W3C validator