Step | Hyp | Ref
| Expression |
1 | | cnfldstr 21150 |
. 2
⊢
ℂfld Struct 〈1, ;13〉 |
2 | | structn0fun 17091 |
. . 3
⊢
(ℂfld Struct 〈1, ;13〉 → Fun (ℂfld ∖
{∅})) |
3 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(Base‘ndx) ∈ V |
4 | | cnex 11197 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
5 | 3, 4 | opnzi 5474 |
. . . . . . . . . . . 12
⊢
〈(Base‘ndx), ℂ〉 ≠ ∅ |
6 | 5 | nesymi 2997 |
. . . . . . . . . . 11
⊢ ¬
∅ = 〈(Base‘ndx), ℂ〉 |
7 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(+g‘ndx) ∈ V |
8 | | mpoaddex 35485 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣)) ∈ V |
9 | 7, 8 | opnzi 5474 |
. . . . . . . . . . . 12
⊢
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 ≠ ∅ |
10 | 9 | nesymi 2997 |
. . . . . . . . . . 11
⊢ ¬
∅ = 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 |
11 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(.r‘ndx) ∈ V |
12 | | mpomulex 35478 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ V |
13 | 11, 12 | opnzi 5474 |
. . . . . . . . . . . 12
⊢
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉 ≠ ∅ |
14 | 13 | nesymi 2997 |
. . . . . . . . . . 11
⊢ ¬
∅ = 〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉 |
15 | | 3ioran 1105 |
. . . . . . . . . . . 12
⊢ (¬
(∅ = 〈(Base‘ndx), ℂ〉 ∨ ∅ =
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 ∨ ∅ =
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉) ↔ (¬ ∅ =
〈(Base‘ndx), ℂ〉 ∧ ¬ ∅ =
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 ∧ ¬ ∅ =
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉)) |
16 | | 0ex 5307 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
17 | 16 | eltp 4692 |
. . . . . . . . . . . 12
⊢ (∅
∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ↔ (∅ =
〈(Base‘ndx), ℂ〉 ∨ ∅ =
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 ∨ ∅ =
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉)) |
18 | 15, 17 | xchnxbir 333 |
. . . . . . . . . . 11
⊢ (¬
∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ↔ (¬ ∅ =
〈(Base‘ndx), ℂ〉 ∧ ¬ ∅ =
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉 ∧ ¬ ∅ =
〈(.r‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉)) |
19 | 6, 10, 14, 18 | mpbir3an 1340 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} |
20 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(*𝑟‘ndx) ∈ V |
21 | | cjf 15058 |
. . . . . . . . . . . . . 14
⊢
∗:ℂ⟶ℂ |
22 | | fex 7230 |
. . . . . . . . . . . . . 14
⊢
((∗:ℂ⟶ℂ ∧ ℂ ∈ V) →
∗ ∈ V) |
23 | 21, 4, 22 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ ∗
∈ V |
24 | 20, 23 | opnzi 5474 |
. . . . . . . . . . . 12
⊢
〈(*𝑟‘ndx), ∗〉 ≠
∅ |
25 | 24 | necomi 2994 |
. . . . . . . . . . 11
⊢ ∅
≠ 〈(*𝑟‘ndx), ∗〉 |
26 | | nelsn 4668 |
. . . . . . . . . . 11
⊢ (∅
≠ 〈(*𝑟‘ndx), ∗〉 → ¬
∅ ∈ {〈(*𝑟‘ndx),
∗〉}) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ {〈(*𝑟‘ndx),
∗〉} |
28 | 19, 27 | pm3.2i 470 |
. . . . . . . . 9
⊢ (¬
∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∧ ¬ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) |
29 | | fvex 6904 |
. . . . . . . . . . . . . 14
⊢
(TopSet‘ndx) ∈ V |
30 | | fvex 6904 |
. . . . . . . . . . . . . 14
⊢
(MetOpen‘(abs ∘ − )) ∈ V |
31 | 29, 30 | opnzi 5474 |
. . . . . . . . . . . . 13
⊢
〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉
≠ ∅ |
32 | 31 | nesymi 2997 |
. . . . . . . . . . . 12
⊢ ¬
∅ = 〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉 |
33 | | fvex 6904 |
. . . . . . . . . . . . . 14
⊢
(le‘ndx) ∈ V |
34 | | letsr 18553 |
. . . . . . . . . . . . . . 15
⊢ ≤
∈ TosetRel |
35 | 34 | elexi 3493 |
. . . . . . . . . . . . . 14
⊢ ≤
∈ V |
36 | 33, 35 | opnzi 5474 |
. . . . . . . . . . . . 13
⊢
〈(le‘ndx), ≤ 〉 ≠ ∅ |
37 | 36 | nesymi 2997 |
. . . . . . . . . . . 12
⊢ ¬
∅ = 〈(le‘ndx), ≤ 〉 |
38 | | fvex 6904 |
. . . . . . . . . . . . . 14
⊢
(dist‘ndx) ∈ V |
39 | | absf 15291 |
. . . . . . . . . . . . . . . 16
⊢
abs:ℂ⟶ℝ |
40 | | fex 7230 |
. . . . . . . . . . . . . . . 16
⊢
((abs:ℂ⟶ℝ ∧ ℂ ∈ V) → abs ∈
V) |
41 | 39, 4, 40 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ abs
∈ V |
42 | | subf 11469 |
. . . . . . . . . . . . . . . 16
⊢ −
:(ℂ × ℂ)⟶ℂ |
43 | 4, 4 | xpex 7744 |
. . . . . . . . . . . . . . . 16
⊢ (ℂ
× ℂ) ∈ V |
44 | | fex 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((
− :(ℂ × ℂ)⟶ℂ ∧ (ℂ ×
ℂ) ∈ V) → − ∈ V) |
45 | 42, 43, 44 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ −
∈ V |
46 | 41, 45 | coex 7925 |
. . . . . . . . . . . . . 14
⊢ (abs
∘ − ) ∈ V |
47 | 38, 46 | opnzi 5474 |
. . . . . . . . . . . . 13
⊢
〈(dist‘ndx), (abs ∘ − )〉 ≠
∅ |
48 | 47 | nesymi 2997 |
. . . . . . . . . . . 12
⊢ ¬
∅ = 〈(dist‘ndx), (abs ∘ − )〉 |
49 | 32, 37, 48 | 3pm3.2ni 1487 |
. . . . . . . . . . 11
⊢ ¬
(∅ = 〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉 ∨ ∅ = 〈(le‘ndx), ≤ 〉 ∨ ∅ =
〈(dist‘ndx), (abs ∘ − )〉) |
50 | 16 | eltp 4692 |
. . . . . . . . . . 11
⊢ (∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ↔ (∅ = 〈(TopSet‘ndx), (MetOpen‘(abs
∘ − ))〉 ∨ ∅ = 〈(le‘ndx), ≤ 〉 ∨
∅ = 〈(dist‘ndx), (abs ∘ −
)〉)) |
51 | 49, 50 | mtbir 323 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} |
52 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(UnifSet‘ndx) ∈ V |
53 | | fvex 6904 |
. . . . . . . . . . . . 13
⊢
(metUnif‘(abs ∘ − )) ∈ V |
54 | 52, 53 | opnzi 5474 |
. . . . . . . . . . . 12
⊢
〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉
≠ ∅ |
55 | 54 | necomi 2994 |
. . . . . . . . . . 11
⊢ ∅
≠ 〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉 |
56 | | nelsn 4668 |
. . . . . . . . . . 11
⊢ (∅
≠ 〈(UnifSet‘ndx), (metUnif‘(abs ∘ − ))〉
→ ¬ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . 10
⊢ ¬
∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉} |
58 | 51, 57 | pm3.2i 470 |
. . . . . . . . 9
⊢ (¬
∅ ∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∧ ¬ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}) |
59 | 28, 58 | pm3.2i 470 |
. . . . . . . 8
⊢ ((¬
∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∧ ¬ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∧ (¬ ∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ ¬ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
60 | | ioran 981 |
. . . . . . . . 9
⊢ (¬
((∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∨ (∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉})) ↔ (¬ (∅ ∈
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∧ ¬ (∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}))) |
61 | | ioran 981 |
. . . . . . . . . 10
⊢ (¬
(∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ↔ (¬
∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∧ ¬ ∅ ∈
{〈(*𝑟‘ndx), ∗〉})) |
62 | | ioran 981 |
. . . . . . . . . 10
⊢ (¬
(∅ ∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∨ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}) ↔ (¬ ∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ ¬ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉})) |
63 | 61, 62 | anbi12i 626 |
. . . . . . . . 9
⊢ ((¬
(∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∧ ¬ (∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉})) ↔ ((¬ ∅ ∈
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∧ ¬ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∧ (¬ ∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ ¬ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}))) |
64 | 60, 63 | bitri 275 |
. . . . . . . 8
⊢ (¬
((∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∨ (∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉})) ↔ ((¬ ∅ ∈
{〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∧ ¬ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∧ (¬ ∅
∈ {〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∧ ¬ ∅ ∈ {〈(UnifSet‘ndx),
(metUnif‘(abs ∘ − ))〉}))) |
65 | 59, 64 | mpbir 230 |
. . . . . . 7
⊢ ¬
((∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∨ (∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉})) |
66 | | gg-dfcnfld 35486 |
. . . . . . . . 9
⊢
ℂfld = (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
67 | 66 | eleq2i 2824 |
. . . . . . . 8
⊢ (∅
∈ ℂfld ↔ ∅ ∈ (({〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉}))) |
68 | | elun 4148 |
. . . . . . . 8
⊢ (∅
∈ (({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) ↔ (∅ ∈ ({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∨ ∅ ∈
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉}))) |
69 | | elun 4148 |
. . . . . . . . 9
⊢ (∅
∈ ({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ↔ (∅
∈ {〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉})) |
70 | | elun 4148 |
. . . . . . . . 9
⊢ (∅
∈ ({〈(TopSet‘ndx), (MetOpen‘(abs ∘ −
))〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs
∘ − )〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}) ↔ (∅ ∈ {〈(TopSet‘ndx),
(MetOpen‘(abs ∘ − ))〉, 〈(le‘ndx), ≤
〉, 〈(dist‘ndx), (abs ∘ − )〉} ∨ ∅
∈ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
71 | 69, 70 | orbi12i 912 |
. . . . . . . 8
⊢ ((∅
∈ ({〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∨ ∅ ∈
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) ↔ ((∅ ∈ {〈(Base‘ndx), ℂ〉,
〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∨ (∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}))) |
72 | 67, 68, 71 | 3bitri 297 |
. . . . . . 7
⊢ (∅
∈ ℂfld ↔ ((∅ ∈ {〈(Base‘ndx),
ℂ〉, 〈(+g‘ndx), (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 + 𝑣))〉, 〈(.r‘ndx),
(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))〉} ∨ ∅ ∈
{〈(*𝑟‘ndx), ∗〉}) ∨ (∅ ∈
{〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∨ ∅ ∈ {〈(UnifSet‘ndx), (metUnif‘(abs
∘ − ))〉}))) |
73 | 65, 72 | mtbir 323 |
. . . . . 6
⊢ ¬
∅ ∈ ℂfld |
74 | | disjsn 4715 |
. . . . . 6
⊢
((ℂfld ∩ {∅}) = ∅ ↔ ¬ ∅
∈ ℂfld) |
75 | 73, 74 | mpbir 230 |
. . . . 5
⊢
(ℂfld ∩ {∅}) = ∅ |
76 | | disjdif2 4479 |
. . . . 5
⊢
((ℂfld ∩ {∅}) = ∅ →
(ℂfld ∖ {∅}) =
ℂfld) |
77 | 75, 76 | ax-mp 5 |
. . . 4
⊢
(ℂfld ∖ {∅}) =
ℂfld |
78 | 77 | funeqi 6569 |
. . 3
⊢ (Fun
(ℂfld ∖ {∅}) ↔ Fun
ℂfld) |
79 | 2, 78 | sylib 217 |
. 2
⊢
(ℂfld Struct 〈1, ;13〉 → Fun
ℂfld) |
80 | 1, 79 | ax-mp 5 |
1
⊢ Fun
ℂfld |