![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prm23ge5 | Structured version Visualization version GIF version |
Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
prm23ge5 | ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
2 | 3ioran 1086 | . . 3 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5))) | |
3 | 3ianor 1087 | . . . . . . 7 ⊢ (¬ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) | |
4 | eluz2 12064 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃)) | |
5 | 3, 4 | xchnxbir 325 | . . . . . 6 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) |
6 | 5nn 11528 | . . . . . . . . 9 ⊢ 5 ∈ ℕ | |
7 | 6 | nnzi 11819 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
8 | 7 | pm2.24i 148 | . . . . . . 7 ⊢ (¬ 5 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
9 | pm2.24 122 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (¬ 𝑃 ∈ ℤ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
10 | prmz 15875 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
11 | 9, 10 | syl11 33 | . . . . . . . 8 ⊢ (¬ 𝑃 ∈ ℤ → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
12 | 11 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑃 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
13 | 10 | zred 11900 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
14 | 5re 11529 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 5 ∈ ℝ) |
16 | 13, 15 | ltnled 10587 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 ↔ ¬ 5 ≤ 𝑃)) |
17 | prm23lt5 16007 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | |
18 | ioran 966 | . . . . . . . . . . . 12 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3)) | |
19 | pm2.24 122 | . . . . . . . . . . . 12 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → (¬ (𝑃 = 2 ∨ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
20 | 18, 19 | syl5bir 235 | . . . . . . . . . . 11 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
21 | 17, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
22 | 21 | ex 405 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
23 | 16, 22 | sylbird 252 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
24 | 23 | com3l 89 | . . . . . . 7 ⊢ (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
25 | 8, 12, 24 | 3jaoi 1407 | . . . . . 6 ⊢ ((¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
26 | 5, 25 | sylbi 209 | . . . . 5 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
27 | 26 | com12 32 | . . . 4 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (¬ 𝑃 ∈ (ℤ≥‘5) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
28 | 27 | 3impia 1097 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
29 | 2, 28 | sylbi 209 | . 2 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
30 | 1, 29 | pm2.61i 177 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∨ wo 833 ∨ w3o 1067 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 ℝcr 10334 < clt 10474 ≤ cle 10475 2c2 11495 3c3 11496 5c5 11498 ℤcz 11793 ℤ≥cuz 12058 ℙcprime 15871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-sup 8701 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-n0 11708 df-z 11794 df-uz 12059 df-rp 12205 df-fz 12709 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-dvds 15468 df-prm 15872 |
This theorem is referenced by: gausslemma2dlem0f 25639 gausslemma2dlem4 25647 |
Copyright terms: Public domain | W3C validator |