| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prm23ge5 | Structured version Visualization version GIF version | ||
| Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| prm23ge5 | ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 2 | 3ioran 1106 | . . 3 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5))) | |
| 3 | 3ianor 1107 | . . . . . . 7 ⊢ (¬ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) | |
| 4 | eluz2 12884 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃)) | |
| 5 | 3, 4 | xchnxbir 333 | . . . . . 6 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) |
| 6 | 5nn 12352 | . . . . . . . . 9 ⊢ 5 ∈ ℕ | |
| 7 | 6 | nnzi 12641 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 8 | 7 | pm2.24i 150 | . . . . . . 7 ⊢ (¬ 5 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 9 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (¬ 𝑃 ∈ ℤ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 10 | prmz 16712 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 11 | 9, 10 | syl11 33 | . . . . . . . 8 ⊢ (¬ 𝑃 ∈ ℤ → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 12 | 11 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑃 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 13 | 10 | zred 12722 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
| 14 | 5re 12353 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 5 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11408 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 ↔ ¬ 5 ≤ 𝑃)) |
| 17 | prm23lt5 16852 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | |
| 18 | ioran 986 | . . . . . . . . . . . 12 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3)) | |
| 19 | pm2.24 124 | . . . . . . . . . . . 12 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → (¬ (𝑃 = 2 ∨ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 20 | 18, 19 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 21 | 17, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 22 | 21 | ex 412 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 23 | 16, 22 | sylbird 260 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 24 | 23 | com3l 89 | . . . . . . 7 ⊢ (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 25 | 8, 12, 24 | 3jaoi 1430 | . . . . . 6 ⊢ ((¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 26 | 5, 25 | sylbi 217 | . . . . 5 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 27 | 26 | com12 32 | . . . 4 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (¬ 𝑃 ∈ (ℤ≥‘5) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 28 | 27 | 3impia 1118 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 29 | 2, 28 | sylbi 217 | . 2 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 30 | 1, 29 | pm2.61i 182 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 ∨ w3o 1086 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 ℝcr 11154 < clt 11295 ≤ cle 11296 2c2 12321 3c3 12322 5c5 12324 ℤcz 12613 ℤ≥cuz 12878 ℙcprime 16708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-prm 16709 |
| This theorem is referenced by: gausslemma2dlem0f 27405 gausslemma2dlem4 27413 |
| Copyright terms: Public domain | W3C validator |