MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prm23ge5 Structured version   Visualization version   GIF version

Theorem prm23ge5 16862
Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
prm23ge5 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))

Proof of Theorem prm23ge5
StepHypRef Expression
1 ax-1 6 . 2 ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
2 3ioran 1106 . . 3 (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ‘5)))
3 3ianor 1107 . . . . . . 7 (¬ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃))
4 eluz2 12909 . . . . . . 7 (𝑃 ∈ (ℤ‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃))
53, 4xchnxbir 333 . . . . . 6 𝑃 ∈ (ℤ‘5) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃))
6 5nn 12379 . . . . . . . . 9 5 ∈ ℕ
76nnzi 12667 . . . . . . . 8 5 ∈ ℤ
87pm2.24i 150 . . . . . . 7 (¬ 5 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
9 pm2.24 124 . . . . . . . . 9 (𝑃 ∈ ℤ → (¬ 𝑃 ∈ ℤ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
10 prmz 16722 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
119, 10syl11 33 . . . . . . . 8 𝑃 ∈ ℤ → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
1211a1d 25 . . . . . . 7 𝑃 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
1310zred 12747 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
14 5re 12380 . . . . . . . . . . 11 5 ∈ ℝ
1514a1i 11 . . . . . . . . . 10 (𝑃 ∈ ℙ → 5 ∈ ℝ)
1613, 15ltnled 11437 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 < 5 ↔ ¬ 5 ≤ 𝑃))
17 prm23lt5 16861 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
18 ioran 984 . . . . . . . . . . . 12 (¬ (𝑃 = 2 ∨ 𝑃 = 3) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3))
19 pm2.24 124 . . . . . . . . . . . 12 ((𝑃 = 2 ∨ 𝑃 = 3) → (¬ (𝑃 = 2 ∨ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
2018, 19biimtrrid 243 . . . . . . . . . . 11 ((𝑃 = 2 ∨ 𝑃 = 3) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
2117, 20syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
2221ex 412 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 < 5 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
2316, 22sylbird 260 . . . . . . . 8 (𝑃 ∈ ℙ → (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
2423com3l 89 . . . . . . 7 (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
258, 12, 243jaoi 1428 . . . . . 6 ((¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
265, 25sylbi 217 . . . . 5 𝑃 ∈ (ℤ‘5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
2726com12 32 . . . 4 ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (¬ 𝑃 ∈ (ℤ‘5) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))))
28273impia 1117 . . 3 ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
292, 28sylbi 217 . 2 (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5))))
301, 29pm2.61i 182 1 (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  cr 11183   < clt 11324  cle 11325  2c2 12348  3c3 12349  5c5 12351  cz 12639  cuz 12903  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-prm 16719
This theorem is referenced by:  gausslemma2dlem0f  27423  gausslemma2dlem4  27431
  Copyright terms: Public domain W3C validator