![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prm23ge5 | Structured version Visualization version GIF version |
Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
prm23ge5 | ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . 2 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
2 | 3ioran 1106 | . . 3 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5))) | |
3 | 3ianor 1107 | . . . . . . 7 ⊢ (¬ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) | |
4 | eluz2 12827 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃)) | |
5 | 3, 4 | xchnxbir 332 | . . . . . 6 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) |
6 | 5nn 12297 | . . . . . . . . 9 ⊢ 5 ∈ ℕ | |
7 | 6 | nnzi 12585 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
8 | 7 | pm2.24i 150 | . . . . . . 7 ⊢ (¬ 5 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
9 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (¬ 𝑃 ∈ ℤ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
10 | prmz 16611 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
11 | 9, 10 | syl11 33 | . . . . . . . 8 ⊢ (¬ 𝑃 ∈ ℤ → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
12 | 11 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑃 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
13 | 10 | zred 12665 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
14 | 5re 12298 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 5 ∈ ℝ) |
16 | 13, 15 | ltnled 11360 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 ↔ ¬ 5 ≤ 𝑃)) |
17 | prm23lt5 16746 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | |
18 | ioran 982 | . . . . . . . . . . . 12 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3)) | |
19 | pm2.24 124 | . . . . . . . . . . . 12 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → (¬ (𝑃 = 2 ∨ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
20 | 18, 19 | biimtrrid 242 | . . . . . . . . . . 11 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
21 | 17, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
22 | 21 | ex 413 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
23 | 16, 22 | sylbird 259 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
24 | 23 | com3l 89 | . . . . . . 7 ⊢ (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
25 | 8, 12, 24 | 3jaoi 1427 | . . . . . 6 ⊢ ((¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
26 | 5, 25 | sylbi 216 | . . . . 5 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
27 | 26 | com12 32 | . . . 4 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (¬ 𝑃 ∈ (ℤ≥‘5) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
28 | 27 | 3impia 1117 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
29 | 2, 28 | sylbi 216 | . 2 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
30 | 1, 29 | pm2.61i 182 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∨ w3o 1086 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 ℝcr 11108 < clt 11247 ≤ cle 11248 2c2 12266 3c3 12267 5c5 12269 ℤcz 12557 ℤ≥cuz 12821 ℙcprime 16607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-prm 16608 |
This theorem is referenced by: gausslemma2dlem0f 26861 gausslemma2dlem4 26869 |
Copyright terms: Public domain | W3C validator |