| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prm23ge5 | Structured version Visualization version GIF version | ||
| Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| prm23ge5 | ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . 2 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 2 | 3ioran 1105 | . . 3 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5))) | |
| 3 | 3ianor 1106 | . . . . . . 7 ⊢ (¬ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) | |
| 4 | eluz2 12806 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘5) ↔ (5 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 5 ≤ 𝑃)) | |
| 5 | 3, 4 | xchnxbir 333 | . . . . . 6 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) ↔ (¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃)) |
| 6 | 5nn 12279 | . . . . . . . . 9 ⊢ 5 ∈ ℕ | |
| 7 | 6 | nnzi 12564 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 8 | 7 | pm2.24i 150 | . . . . . . 7 ⊢ (¬ 5 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 9 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (¬ 𝑃 ∈ ℤ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 10 | prmz 16652 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 11 | 9, 10 | syl11 33 | . . . . . . . 8 ⊢ (¬ 𝑃 ∈ ℤ → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 12 | 11 | a1d 25 | . . . . . . 7 ⊢ (¬ 𝑃 ∈ ℤ → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 13 | 10 | zred 12645 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
| 14 | 5re 12280 | . . . . . . . . . . 11 ⊢ 5 ∈ ℝ | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 5 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11328 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 ↔ ¬ 5 ≤ 𝑃)) |
| 17 | prm23lt5 16792 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3)) | |
| 18 | ioran 985 | . . . . . . . . . . . 12 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3) ↔ (¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3)) | |
| 19 | pm2.24 124 | . . . . . . . . . . . 12 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → (¬ (𝑃 = 2 ∨ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) | |
| 20 | 18, 19 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ ((𝑃 = 2 ∨ 𝑃 = 3) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 21 | 17, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 < 5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 22 | 21 | ex 412 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃 < 5 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 23 | 16, 22 | sylbird 260 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 24 | 23 | com3l 89 | . . . . . . 7 ⊢ (¬ 5 ≤ 𝑃 → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 25 | 8, 12, 24 | 3jaoi 1430 | . . . . . 6 ⊢ ((¬ 5 ∈ ℤ ∨ ¬ 𝑃 ∈ ℤ ∨ ¬ 5 ≤ 𝑃) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 26 | 5, 25 | sylbi 217 | . . . . 5 ⊢ (¬ 𝑃 ∈ (ℤ≥‘5) → ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 27 | 26 | com12 32 | . . . 4 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3) → (¬ 𝑃 ∈ (ℤ≥‘5) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))))) |
| 28 | 27 | 3impia 1117 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑃 = 3 ∧ ¬ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 29 | 2, 28 | sylbi 217 | . 2 ⊢ (¬ (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)) → (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5)))) |
| 30 | 1, 29 | pm2.61i 182 | 1 ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ≥‘5))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 ℝcr 11074 < clt 11215 ≤ cle 11216 2c2 12248 3c3 12249 5c5 12251 ℤcz 12536 ℤ≥cuz 12800 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-prm 16649 |
| This theorem is referenced by: gausslemma2dlem0f 27279 gausslemma2dlem4 27287 |
| Copyright terms: Public domain | W3C validator |