MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Visualization version   GIF version

Theorem fbunfip 23118
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem fbunfip
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 9279 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
21notbid 317 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
3 3ioran 1105 . . . 4 (¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
4 df-3an 1088 . . . 4 ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
53, 4bitr2i 275 . . 3 (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
62, 5bitr4di 288 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
7 nesym 2997 . . . . . . 7 ((𝑥𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥𝑦))
87ralbii 3092 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦))
9 ralnex 3072 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
108, 9bitri 274 . . . . 5 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1110ralbii 3092 . . . 4 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
12 ralnex 3072 . . . 4 (∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1311, 12bitri 274 . . 3 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
14 fbasfip 23117 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
15 fbasfip 23117 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈ (fi‘𝐺))
1614, 15anim12i 613 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)))
1716biantrurd 533 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
1813, 17bitr2id 283 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
19 ssfii 9268 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹))
20 ssralv 3997 . . . . 5 (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
2119, 20syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
22 ssfii 9268 . . . . . 6 (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺))
23 ssralv 3997 . . . . . 6 (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2422, 23syl 17 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2524ralimdv 3162 . . . 4 (𝐺 ∈ (fBas‘𝑌) → (∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
2621, 25sylan9 508 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
27 ineq1 4151 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
2827neeq1d 3000 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝑦) ≠ ∅ ↔ (𝑧𝑦) ≠ ∅))
29 ineq2 4152 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
3029neeq1d 3000 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑦) ≠ ∅ ↔ (𝑧𝑤) ≠ ∅))
3128, 30cbvral2vw 3223 . . . 4 (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅)
32 fbssfi 23086 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧𝐹 𝑧𝑥)
33 fbssfi 23086 . . . . . . 7 ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤𝐺 𝑤𝑦)
34 r19.29 3113 . . . . . . . . . 10 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → ∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥))
35 r19.29 3113 . . . . . . . . . . . . 13 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → ∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦))
36 ss2in 4182 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑥𝑤𝑦) → (𝑧𝑤) ⊆ (𝑥𝑦))
37 sseq2 3957 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) ↔ (𝑧𝑤) ⊆ ∅))
38 ss0 4344 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑤) ⊆ ∅ → (𝑧𝑤) = ∅)
3937, 38syl6bi 252 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) → (𝑧𝑤) = ∅))
4036, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥𝑤𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑤) = ∅))
4140necon3d 2961 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑤𝑦) → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
4241ex 413 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (𝑤𝑦 → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅)))
4342com13 88 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ≠ ∅ → (𝑤𝑦 → (𝑧𝑥 → (𝑥𝑦) ≠ ∅)))
4443imp 407 . . . . . . . . . . . . . 14 (((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4544rexlimivw 3144 . . . . . . . . . . . . 13 (∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4635, 45syl 17 . . . . . . . . . . . 12 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4746impancom 452 . . . . . . . . . . 11 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4847rexlimivw 3144 . . . . . . . . . 10 (∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4934, 48syl 17 . . . . . . . . 9 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
5049expimpd 454 . . . . . . . 8 (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑥𝑦) ≠ ∅))
5150com12 32 . . . . . . 7 ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5232, 33, 51syl2an 596 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5352an4s 657 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5453ralrimdvva 3199 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5531, 54biimtrid 241 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5626, 55impbid 211 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
576, 18, 563bitrd 304 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  cun 3895  cin 3896  wss 3897  c0 4268  cfv 6473  ficfi 9259  fBascfbas 20683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-om 7773  df-1o 8359  df-er 8561  df-en 8797  df-fin 8800  df-fi 9260  df-fbas 20692
This theorem is referenced by:  isufil2  23157  ufileu  23168  filufint  23169  fmfnfm  23207  hausflim  23230  flimclslem  23233  fclsfnflim  23276  flimfnfcls  23277
  Copyright terms: Public domain W3C validator