MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Visualization version   GIF version

Theorem fbunfip 23236
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem fbunfip
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 9373 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
21notbid 318 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
3 3ioran 1107 . . . 4 (¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
4 df-3an 1090 . . . 4 ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
53, 4bitr2i 276 . . 3 (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
62, 5bitr4di 289 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
7 nesym 3001 . . . . . . 7 ((𝑥𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥𝑦))
87ralbii 3097 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦))
9 ralnex 3076 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
108, 9bitri 275 . . . . 5 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1110ralbii 3097 . . . 4 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
12 ralnex 3076 . . . 4 (∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1311, 12bitri 275 . . 3 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
14 fbasfip 23235 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
15 fbasfip 23235 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈ (fi‘𝐺))
1614, 15anim12i 614 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)))
1716biantrurd 534 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
1813, 17bitr2id 284 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
19 ssfii 9362 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹))
20 ssralv 4015 . . . . 5 (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
2119, 20syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
22 ssfii 9362 . . . . . 6 (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺))
23 ssralv 4015 . . . . . 6 (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2422, 23syl 17 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2524ralimdv 3167 . . . 4 (𝐺 ∈ (fBas‘𝑌) → (∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
2621, 25sylan9 509 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
27 ineq1 4170 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
2827neeq1d 3004 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝑦) ≠ ∅ ↔ (𝑧𝑦) ≠ ∅))
29 ineq2 4171 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
3029neeq1d 3004 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑦) ≠ ∅ ↔ (𝑧𝑤) ≠ ∅))
3128, 30cbvral2vw 3230 . . . 4 (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅)
32 fbssfi 23204 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧𝐹 𝑧𝑥)
33 fbssfi 23204 . . . . . . 7 ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤𝐺 𝑤𝑦)
34 r19.29 3118 . . . . . . . . . 10 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → ∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥))
35 r19.29 3118 . . . . . . . . . . . . 13 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → ∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦))
36 ss2in 4201 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑥𝑤𝑦) → (𝑧𝑤) ⊆ (𝑥𝑦))
37 sseq2 3975 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) ↔ (𝑧𝑤) ⊆ ∅))
38 ss0 4363 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑤) ⊆ ∅ → (𝑧𝑤) = ∅)
3937, 38syl6bi 253 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) → (𝑧𝑤) = ∅))
4036, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥𝑤𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑤) = ∅))
4140necon3d 2965 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑤𝑦) → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
4241ex 414 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (𝑤𝑦 → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅)))
4342com13 88 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ≠ ∅ → (𝑤𝑦 → (𝑧𝑥 → (𝑥𝑦) ≠ ∅)))
4443imp 408 . . . . . . . . . . . . . 14 (((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4544rexlimivw 3149 . . . . . . . . . . . . 13 (∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4635, 45syl 17 . . . . . . . . . . . 12 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4746impancom 453 . . . . . . . . . . 11 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4847rexlimivw 3149 . . . . . . . . . 10 (∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4934, 48syl 17 . . . . . . . . 9 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
5049expimpd 455 . . . . . . . 8 (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑥𝑦) ≠ ∅))
5150com12 32 . . . . . . 7 ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5232, 33, 51syl2an 597 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5352an4s 659 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5453ralrimdvva 3204 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5531, 54biimtrid 241 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5626, 55impbid 211 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
576, 18, 563bitrd 305 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2944  wral 3065  wrex 3074  cun 3913  cin 3914  wss 3915  c0 4287  cfv 6501  ficfi 9353  fBascfbas 20800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-er 8655  df-en 8891  df-fin 8894  df-fi 9354  df-fbas 20809
This theorem is referenced by:  isufil2  23275  ufileu  23286  filufint  23287  fmfnfm  23325  hausflim  23348  flimclslem  23351  fclsfnflim  23394  flimfnfcls  23395
  Copyright terms: Public domain W3C validator