MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Visualization version   GIF version

Theorem fbunfip 22469
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem fbunfip
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 8886 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
21notbid 320 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
3 3ioran 1101 . . . 4 (¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
4 df-3an 1084 . . . 4 ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
53, 4bitr2i 278 . . 3 (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
62, 5syl6bbr 291 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
7 nesym 3070 . . . . . . 7 ((𝑥𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥𝑦))
87ralbii 3163 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦))
9 ralnex 3234 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
108, 9bitri 277 . . . . 5 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1110ralbii 3163 . . . 4 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
12 ralnex 3234 . . . 4 (∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1311, 12bitri 277 . . 3 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
14 fbasfip 22468 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
15 fbasfip 22468 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈ (fi‘𝐺))
1614, 15anim12i 614 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)))
1716biantrurd 535 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
1813, 17syl5rbb 286 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
19 ssfii 8875 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹))
20 ssralv 4031 . . . . 5 (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
2119, 20syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
22 ssfii 8875 . . . . . 6 (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺))
23 ssralv 4031 . . . . . 6 (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2422, 23syl 17 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2524ralimdv 3176 . . . 4 (𝐺 ∈ (fBas‘𝑌) → (∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
2621, 25sylan9 510 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
27 ineq1 4179 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
2827neeq1d 3073 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝑦) ≠ ∅ ↔ (𝑧𝑦) ≠ ∅))
29 ineq2 4181 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
3029neeq1d 3073 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑦) ≠ ∅ ↔ (𝑧𝑤) ≠ ∅))
3128, 30cbvral2vw 3460 . . . 4 (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅)
32 fbssfi 22437 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧𝐹 𝑧𝑥)
33 fbssfi 22437 . . . . . . 7 ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤𝐺 𝑤𝑦)
34 r19.29 3252 . . . . . . . . . 10 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → ∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥))
35 r19.29 3252 . . . . . . . . . . . . 13 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → ∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦))
36 ss2in 4211 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑥𝑤𝑦) → (𝑧𝑤) ⊆ (𝑥𝑦))
37 sseq2 3991 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) ↔ (𝑧𝑤) ⊆ ∅))
38 ss0 4350 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑤) ⊆ ∅ → (𝑧𝑤) = ∅)
3937, 38syl6bi 255 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) → (𝑧𝑤) = ∅))
4036, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥𝑤𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑤) = ∅))
4140necon3d 3035 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑤𝑦) → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
4241ex 415 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (𝑤𝑦 → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅)))
4342com13 88 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ≠ ∅ → (𝑤𝑦 → (𝑧𝑥 → (𝑥𝑦) ≠ ∅)))
4443imp 409 . . . . . . . . . . . . . 14 (((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4544rexlimivw 3280 . . . . . . . . . . . . 13 (∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4635, 45syl 17 . . . . . . . . . . . 12 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4746impancom 454 . . . . . . . . . . 11 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4847rexlimivw 3280 . . . . . . . . . 10 (∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4934, 48syl 17 . . . . . . . . 9 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
5049expimpd 456 . . . . . . . 8 (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑥𝑦) ≠ ∅))
5150com12 32 . . . . . . 7 ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5232, 33, 51syl2an 597 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5352an4s 658 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5453ralrimdvva 3192 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5531, 54syl5bi 244 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5626, 55impbid 214 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
576, 18, 563bitrd 307 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1081  w3a 1082   = wceq 1531  wcel 2108  wne 3014  wral 3136  wrex 3137  cun 3932  cin 3933  wss 3934  c0 4289  cfv 6348  ficfi 8866  fBascfbas 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-fin 8505  df-fi 8867  df-fbas 20534
This theorem is referenced by:  isufil2  22508  ufileu  22519  filufint  22520  fmfnfm  22558  hausflim  22581  flimclslem  22584  fclsfnflim  22627  flimfnfcls  22628
  Copyright terms: Public domain W3C validator