MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Visualization version   GIF version

Theorem fbunfip 23877
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem fbunfip
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 9470 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
21notbid 318 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
3 3ioran 1106 . . . 4 (¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
4 df-3an 1089 . . . 4 ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
53, 4bitr2i 276 . . 3 (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ¬ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)))
62, 5bitr4di 289 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
7 nesym 2997 . . . . . . 7 ((𝑥𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥𝑦))
87ralbii 3093 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦))
9 ralnex 3072 . . . . . 6 (∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
108, 9bitri 275 . . . . 5 (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1110ralbii 3093 . . . 4 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
12 ralnex 3072 . . . 4 (∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
1311, 12bitri 275 . . 3 (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))
14 fbasfip 23876 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
15 fbasfip 23876 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈ (fi‘𝐺))
1614, 15anim12i 613 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)))
1716biantrurd 532 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦) ↔ ((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦))))
1813, 17bitr2id 284 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈ (fi‘𝐹) ∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
19 ssfii 9459 . . . . 5 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹))
20 ssralv 4052 . . . . 5 (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
2119, 20syl 17 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
22 ssfii 9459 . . . . . 6 (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺))
23 ssralv 4052 . . . . . 6 (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2422, 23syl 17 . . . . 5 (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑦𝐺 (𝑥𝑦) ≠ ∅))
2524ralimdv 3169 . . . 4 (𝐺 ∈ (fBas‘𝑌) → (∀𝑥𝐹𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
2621, 25sylan9 507 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ → ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
27 ineq1 4213 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝑦) = (𝑧𝑦))
2827neeq1d 3000 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝑦) ≠ ∅ ↔ (𝑧𝑦) ≠ ∅))
29 ineq2 4214 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝑦) = (𝑧𝑤))
3029neeq1d 3000 . . . . 5 (𝑦 = 𝑤 → ((𝑧𝑦) ≠ ∅ ↔ (𝑧𝑤) ≠ ∅))
3128, 30cbvral2vw 3241 . . . 4 (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ ↔ ∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅)
32 fbssfi 23845 . . . . . . 7 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧𝐹 𝑧𝑥)
33 fbssfi 23845 . . . . . . 7 ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤𝐺 𝑤𝑦)
34 r19.29 3114 . . . . . . . . . 10 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → ∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥))
35 r19.29 3114 . . . . . . . . . . . . 13 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → ∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦))
36 ss2in 4245 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝑥𝑤𝑦) → (𝑧𝑤) ⊆ (𝑥𝑦))
37 sseq2 4010 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) ↔ (𝑧𝑤) ⊆ ∅))
38 ss0 4402 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑤) ⊆ ∅ → (𝑧𝑤) = ∅)
3937, 38biimtrdi 253 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦) = ∅ → ((𝑧𝑤) ⊆ (𝑥𝑦) → (𝑧𝑤) = ∅))
4036, 39syl5com 31 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥𝑤𝑦) → ((𝑥𝑦) = ∅ → (𝑧𝑤) = ∅))
4140necon3d 2961 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑤𝑦) → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
4241ex 412 . . . . . . . . . . . . . . . 16 (𝑧𝑥 → (𝑤𝑦 → ((𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅)))
4342com13 88 . . . . . . . . . . . . . . 15 ((𝑧𝑤) ≠ ∅ → (𝑤𝑦 → (𝑧𝑥 → (𝑥𝑦) ≠ ∅)))
4443imp 406 . . . . . . . . . . . . . 14 (((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4544rexlimivw 3151 . . . . . . . . . . . . 13 (∃𝑤𝐺 ((𝑧𝑤) ≠ ∅ ∧ 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4635, 45syl 17 . . . . . . . . . . . 12 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑧𝑥 → (𝑥𝑦) ≠ ∅))
4746impancom 451 . . . . . . . . . . 11 ((∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4847rexlimivw 3151 . . . . . . . . . 10 (∃𝑧𝐹 (∀𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
4934, 48syl 17 . . . . . . . . 9 ((∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ ∧ ∃𝑧𝐹 𝑧𝑥) → (∃𝑤𝐺 𝑤𝑦 → (𝑥𝑦) ≠ ∅))
5049expimpd 453 . . . . . . . 8 (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (𝑥𝑦) ≠ ∅))
5150com12 32 . . . . . . 7 ((∃𝑧𝐹 𝑧𝑥 ∧ ∃𝑤𝐺 𝑤𝑦) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5232, 33, 51syl2an 596 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5352an4s 660 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → (𝑥𝑦) ≠ ∅))
5453ralrimdvva 3211 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧𝐹𝑤𝐺 (𝑧𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5531, 54biimtrid 242 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅))
5626, 55impbid 212 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥𝑦) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
576, 18, 563bitrd 305 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cun 3949  cin 3950  wss 3951  c0 4333  cfv 6561  ficfi 9450  fBascfbas 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-en 8986  df-fin 8989  df-fi 9451  df-fbas 21361
This theorem is referenced by:  isufil2  23916  ufileu  23927  filufint  23928  fmfnfm  23966  hausflim  23989  flimclslem  23992  fclsfnflim  24035  flimfnfcls  24036
  Copyright terms: Public domain W3C validator