Step | Hyp | Ref
| Expression |
1 | | elfiun 9189 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∅ ∈ (fi‘(𝐹 ∪ 𝐺)) ↔ (∅ ∈ (fi‘𝐹) ∨ ∅ ∈
(fi‘𝐺) ∨
∃𝑥 ∈
(fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)))) |
2 | 1 | notbid 318 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ 𝐺)) ↔ ¬ (∅ ∈
(fi‘𝐹) ∨ ∅
∈ (fi‘𝐺) ∨
∃𝑥 ∈
(fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)))) |
3 | | 3ioran 1105 |
. . . 4
⊢ (¬
(∅ ∈ (fi‘𝐹) ∨ ∅ ∈ (fi‘𝐺) ∨ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) ↔ (¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺)
∧ ¬ ∃𝑥 ∈
(fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦))) |
4 | | df-3an 1088 |
. . . 4
⊢ ((¬
∅ ∈ (fi‘𝐹)
∧ ¬ ∅ ∈ (fi‘𝐺) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) ↔ ((¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦))) |
5 | 3, 4 | bitr2i 275 |
. . 3
⊢ (((¬
∅ ∈ (fi‘𝐹)
∧ ¬ ∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) ↔ ¬ (∅ ∈
(fi‘𝐹) ∨ ∅
∈ (fi‘𝐺) ∨
∃𝑥 ∈
(fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦))) |
6 | 2, 5 | bitr4di 289 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ 𝐺)) ↔ ((¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)))) |
7 | | nesym 3000 |
. . . . . . 7
⊢ ((𝑥 ∩ 𝑦) ≠ ∅ ↔ ¬ ∅ = (𝑥 ∩ 𝑦)) |
8 | 7 | ralbii 3092 |
. . . . . 6
⊢
(∀𝑦 ∈
(fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ ↔ ∀𝑦 ∈ (fi‘𝐺) ¬ ∅ = (𝑥 ∩ 𝑦)) |
9 | | ralnex 3167 |
. . . . . 6
⊢
(∀𝑦 ∈
(fi‘𝐺) ¬ ∅
= (𝑥 ∩ 𝑦) ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) |
10 | 8, 9 | bitri 274 |
. . . . 5
⊢
(∀𝑦 ∈
(fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ ↔ ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) |
11 | 10 | ralbii 3092 |
. . . 4
⊢
(∀𝑥 ∈
(fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ ↔ ∀𝑥 ∈ (fi‘𝐹) ¬ ∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) |
12 | | ralnex 3167 |
. . . 4
⊢
(∀𝑥 ∈
(fi‘𝐹) ¬
∃𝑦 ∈
(fi‘𝐺)∅ =
(𝑥 ∩ 𝑦) ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) |
13 | 11, 12 | bitri 274 |
. . 3
⊢
(∀𝑥 ∈
(fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ ↔ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) |
14 | | fbasfip 23019 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈
(fi‘𝐹)) |
15 | | fbasfip 23019 |
. . . . 5
⊢ (𝐺 ∈ (fBas‘𝑌) → ¬ ∅ ∈
(fi‘𝐺)) |
16 | 14, 15 | anim12i 613 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺))) |
17 | 16 | biantrurd 533 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦) ↔ ((¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)))) |
18 | 13, 17 | bitr2id 284 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (((¬ ∅ ∈
(fi‘𝐹) ∧ ¬
∅ ∈ (fi‘𝐺)) ∧ ¬ ∃𝑥 ∈ (fi‘𝐹)∃𝑦 ∈ (fi‘𝐺)∅ = (𝑥 ∩ 𝑦)) ↔ ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅)) |
19 | | ssfii 9178 |
. . . . 5
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (fi‘𝐹)) |
20 | | ssralv 3987 |
. . . . 5
⊢ (𝐹 ⊆ (fi‘𝐹) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅)) |
21 | 19, 20 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (fBas‘𝑋) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅)) |
22 | | ssfii 9178 |
. . . . . 6
⊢ (𝐺 ∈ (fBas‘𝑌) → 𝐺 ⊆ (fi‘𝐺)) |
23 | | ssralv 3987 |
. . . . . 6
⊢ (𝐺 ⊆ (fi‘𝐺) → (∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ (fBas‘𝑌) → (∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |
25 | 24 | ralimdv 3109 |
. . . 4
⊢ (𝐺 ∈ (fBas‘𝑌) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |
26 | 21, 25 | sylan9 508 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |
27 | | ineq1 4139 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∩ 𝑦) = (𝑧 ∩ 𝑦)) |
28 | 27 | neeq1d 3003 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑥 ∩ 𝑦) ≠ ∅ ↔ (𝑧 ∩ 𝑦) ≠ ∅)) |
29 | | ineq2 4140 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑧 ∩ 𝑦) = (𝑧 ∩ 𝑤)) |
30 | 29 | neeq1d 3003 |
. . . . 5
⊢ (𝑦 = 𝑤 → ((𝑧 ∩ 𝑦) ≠ ∅ ↔ (𝑧 ∩ 𝑤) ≠ ∅)) |
31 | 28, 30 | cbvral2vw 3396 |
. . . 4
⊢
(∀𝑥 ∈
𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅ ↔ ∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅) |
32 | | fbssfi 22988 |
. . . . . . 7
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥) |
33 | | fbssfi 22988 |
. . . . . . 7
⊢ ((𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺)) → ∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦) |
34 | | r19.29 3184 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥) → ∃𝑧 ∈ 𝐹 (∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑧 ⊆ 𝑥)) |
35 | | r19.29 3184 |
. . . . . . . . . . . . 13
⊢
((∀𝑤 ∈
𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ ∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦) → ∃𝑤 ∈ 𝐺 ((𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑤 ⊆ 𝑦)) |
36 | | ss2in 4170 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦) → (𝑧 ∩ 𝑤) ⊆ (𝑥 ∩ 𝑦)) |
37 | | sseq2 3947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑧 ∩ 𝑤) ⊆ (𝑥 ∩ 𝑦) ↔ (𝑧 ∩ 𝑤) ⊆ ∅)) |
38 | | ss0 4332 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∩ 𝑤) ⊆ ∅ → (𝑧 ∩ 𝑤) = ∅) |
39 | 37, 38 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑧 ∩ 𝑤) ⊆ (𝑥 ∩ 𝑦) → (𝑧 ∩ 𝑤) = ∅)) |
40 | 36, 39 | syl5com 31 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑧 ∩ 𝑤) = ∅)) |
41 | 40 | necon3d 2964 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ⊆ 𝑥 ∧ 𝑤 ⊆ 𝑦) → ((𝑧 ∩ 𝑤) ≠ ∅ → (𝑥 ∩ 𝑦) ≠ ∅)) |
42 | 41 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝑥 → (𝑤 ⊆ 𝑦 → ((𝑧 ∩ 𝑤) ≠ ∅ → (𝑥 ∩ 𝑦) ≠ ∅))) |
43 | 42 | com13 88 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∩ 𝑤) ≠ ∅ → (𝑤 ⊆ 𝑦 → (𝑧 ⊆ 𝑥 → (𝑥 ∩ 𝑦) ≠ ∅))) |
44 | 43 | imp 407 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑤 ⊆ 𝑦) → (𝑧 ⊆ 𝑥 → (𝑥 ∩ 𝑦) ≠ ∅)) |
45 | 44 | rexlimivw 3211 |
. . . . . . . . . . . . 13
⊢
(∃𝑤 ∈
𝐺 ((𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑤 ⊆ 𝑦) → (𝑧 ⊆ 𝑥 → (𝑥 ∩ 𝑦) ≠ ∅)) |
46 | 35, 45 | syl 17 |
. . . . . . . . . . . 12
⊢
((∀𝑤 ∈
𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ ∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦) → (𝑧 ⊆ 𝑥 → (𝑥 ∩ 𝑦) ≠ ∅)) |
47 | 46 | impancom 452 |
. . . . . . . . . . 11
⊢
((∀𝑤 ∈
𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑧 ⊆ 𝑥) → (∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → (𝑥 ∩ 𝑦) ≠ ∅)) |
48 | 47 | rexlimivw 3211 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
𝐹 (∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ 𝑧 ⊆ 𝑥) → (∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → (𝑥 ∩ 𝑦) ≠ ∅)) |
49 | 34, 48 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ ∧ ∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥) → (∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦 → (𝑥 ∩ 𝑦) ≠ ∅)) |
50 | 49 | expimpd 454 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ → ((∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑥 ∧ ∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦) → (𝑥 ∩ 𝑦) ≠ ∅)) |
51 | 50 | com12 32 |
. . . . . . 7
⊢
((∃𝑧 ∈
𝐹 𝑧 ⊆ 𝑥 ∧ ∃𝑤 ∈ 𝐺 𝑤 ⊆ 𝑦) → (∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ → (𝑥 ∩ 𝑦) ≠ ∅)) |
52 | 32, 33, 51 | syl2an 596 |
. . . . . 6
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑥 ∈ (fi‘𝐹)) ∧ (𝐺 ∈ (fBas‘𝑌) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ → (𝑥 ∩ 𝑦) ≠ ∅)) |
53 | 52 | an4s 657 |
. . . . 5
⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) ∧ (𝑥 ∈ (fi‘𝐹) ∧ 𝑦 ∈ (fi‘𝐺))) → (∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ → (𝑥 ∩ 𝑦) ≠ ∅)) |
54 | 53 | ralrimdvva 3125 |
. . . 4
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑧 ∈ 𝐹 ∀𝑤 ∈ 𝐺 (𝑧 ∩ 𝑤) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅)) |
55 | 31, 54 | syl5bi 241 |
. . 3
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅ → ∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅)) |
56 | 26, 55 | impbid 211 |
. 2
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (∀𝑥 ∈ (fi‘𝐹)∀𝑦 ∈ (fi‘𝐺)(𝑥 ∩ 𝑦) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |
57 | 6, 18, 56 | 3bitrd 305 |
1
⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈
(fi‘(𝐹 ∪ 𝐺)) ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐺 (𝑥 ∩ 𝑦) ≠ ∅)) |