MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord013 Structured version   Visualization version   GIF version

Theorem frgrregord013 28660
Description: If a finite friendship graph is 𝐾-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord013 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord013
Dummy variables 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 13999 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 ax-1 6 . . . . 5 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
3 3ioran 1104 . . . . . 6 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) ↔ (¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3))
4 df-ne 2943 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 ↔ ¬ (♯‘𝑉) = 0)
5 hasheq0 14006 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
65necon3bid 2987 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
76biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → 𝑉 ≠ ∅)
8 elnnne0 12177 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
9 df-ne 2943 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
10 eluz2b3 12591 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) ↔ ((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1))
11 hash2prde 14112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
12 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
1312a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎 ∈ V)
14 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑏 ∈ V
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑏 ∈ V)
16 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎𝑏)
1713, 15, 163jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎𝑏 → (𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏))
18 frgrreggt1.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑉 = (Vtx‘𝐺)
1918eqeq1i 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
2019biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑉 = {𝑎, 𝑏} → (Vtx‘𝐺) = {𝑎, 𝑏})
21 nfrgr2v 28537 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏) ∧ (Vtx‘𝐺) = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
2217, 20, 21syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
23 df-nel 3049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
2422, 23sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ¬ 𝐺 ∈ FriendGraph )
2524pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2726exlimivv 1936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2811, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2928ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3029com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3130com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
33323imp 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
35 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3618, 35rusgrprop0 27837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
37 eluz2gt1 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑉) ∈ (ℤ‘2) → 1 < (♯‘𝑉))
3837anim1ci 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → (𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)))
3918vdgn0frgrv2 28560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4039impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4140ralrimiv 3106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
42 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝐾 = 0 → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0))
4342ralbidv 3120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0))
44 r19.26 3094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
45 nne 2946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0)
4645bicomi 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
4746anbi1i 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
48 ancom 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
49 pm3.24 402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ¬ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
5049bifal 1555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5147, 48, 503bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5251ralbii 3090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ∀𝑣𝑉 ⊥)
53 r19.3rzv 4426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (𝑉 ≠ ∅ → (⊥ ↔ ∀𝑣𝑉 ⊥))
54 falim 1556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
5553, 54syl6bir 253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (𝑉 ≠ ∅ → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5655adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5756com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 ⊥ → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5852, 57sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5944, 58sylbir 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
6059ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
6143, 60syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6261com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6338, 41, 623syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6463ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6564com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑉) ∈ (ℤ‘2) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6665adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6766com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6867com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
69683ad2ant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7036, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7170impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
7271impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
7318frrusgrord 28606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
7473imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
75 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → 𝐾 = 2)
76 oveq1 7262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → (𝐾 − 1) = (2 − 1))
7775, 76oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐾 = 2 → (𝐾 · (𝐾 − 1)) = (2 · (2 − 1)))
7877oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = ((2 · (2 − 1)) + 1))
79 2m1e1 12029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 − 1) = 1
8079oveq2i 7266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · (2 − 1)) = (2 · 1)
81 2t1e2 12066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · 1) = 2
8280, 81eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (2 · (2 − 1)) = 2
8382oveq1i 7265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((2 · (2 − 1)) + 1) = (2 + 1)
84 2p1e3 12045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2 + 1) = 3
8583, 84eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((2 · (2 − 1)) + 1) = 3
8678, 85eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = 3)
8786eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) ↔ (♯‘𝑉) = 3))
88 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
8988ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9089com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑉) = 3 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9187, 90syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9274, 91syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 2 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9318frgrreg 28659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
9493imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9572, 92, 94mpjaod 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9695exp32 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9796com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9897com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9998exp4c 432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 2 → ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
101100com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
102101ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
103102com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
104103com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1051043imp 1109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
106105com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
10734, 106pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1081073exp 1117 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10910, 108sylbir 234 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
110109ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1119, 110syl5bir 242 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
112111com25 99 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1138, 112sylbir 234 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0) → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
114113ex 412 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))))
115114impcomd 411 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
116115com14 96 . . . . . . . . . . . . . . . 16 (𝑉 ≠ ∅ → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1177, 116mpcom 38 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
118117ex 412 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
119118com14 96 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1204, 119syl5bir 242 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
121120com24 95 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1221213imp 1109 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
123122com25 99 . . . . . . . . 9 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (𝐺 RegUSGraph 𝐾 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
124123imp 406 . . . . . . . 8 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
125124com14 96 . . . . . . 7 (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1261253imp 1109 . . . . . 6 ((¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1273, 126sylbi 216 . . . . 5 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1282, 127pm2.61i 182 . . . 4 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1291283exp1 1350 . . 3 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1301, 129mpcom 38 . 2 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1311303imp21 1112 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wfal 1551  wex 1783  wcel 2108  wne 2942  wnel 3048  wral 3063  Vcvv 3422  c0 4253  {cpr 4560   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135  cn 11903  2c2 11958  3c3 11959  0cn0 12163  0*cxnn0 12235  cuz 12511  chash 13972  Vtxcvtx 27269  USGraphcusgr 27422  VtxDegcvtxdg 27735   RegUSGraph crusgr 27826   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-reps 14410  df-csh 14430  df-s2 14489  df-s3 14490  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-vtx 27271  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-fusgr 27587  df-nbgr 27603  df-vtxdg 27736  df-rgr 27827  df-rusgr 27828  df-wlks 27869  df-wlkson 27870  df-trls 27962  df-trlson 27963  df-pths 27985  df-spths 27986  df-pthson 27987  df-spthson 27988  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098  df-wspthsn 28099  df-wspthsnon 28100  df-clwwlk 28247  df-clwwlkn 28290  df-clwwlknon 28353  df-conngr 28452  df-frgr 28524
This theorem is referenced by:  frgrregord13  28661
  Copyright terms: Public domain W3C validator