MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord013 Structured version   Visualization version   GIF version

Theorem frgrregord013 28174
Description: If a finite friendship graph is 𝐾-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord013 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord013
Dummy variables 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 13718 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 ax-1 6 . . . . 5 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
3 3ioran 1102 . . . . . 6 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) ↔ (¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3))
4 df-ne 3017 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 ↔ ¬ (♯‘𝑉) = 0)
5 hasheq0 13725 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
65necon3bid 3060 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
76biimpa 479 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → 𝑉 ≠ ∅)
8 elnnne0 11912 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
9 df-ne 3017 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
10 eluz2b3 12323 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) ↔ ((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1))
11 hash2prde 13829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
12 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑎 ∈ V
1312a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎 ∈ V)
14 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑏 ∈ V
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑏 ∈ V)
16 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏𝑎𝑏)
1713, 15, 163jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎𝑏 → (𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏))
18 frgrreggt1.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑉 = (Vtx‘𝐺)
1918eqeq1i 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
2019biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑉 = {𝑎, 𝑏} → (Vtx‘𝐺) = {𝑎, 𝑏})
21 nfrgr2v 28051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏) ∧ (Vtx‘𝐺) = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
2217, 20, 21syl2an 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
23 df-nel 3124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
2422, 23sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ¬ 𝐺 ∈ FriendGraph )
2524pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2726exlimivv 1933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2811, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2928ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3029com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3130com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
33323imp 1107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
35 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3618, 35rusgrprop0 27349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
37 eluz2gt1 12321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑉) ∈ (ℤ‘2) → 1 < (♯‘𝑉))
3837anim1ci 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → (𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)))
3918vdgn0frgrv2 28074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4039impancom 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4140ralrimiv 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
42 eqeq2 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝐾 = 0 → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0))
4342ralbidv 3197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0))
44 r19.26 3170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
45 nne 3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0)
4645bicomi 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
4746anbi1i 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
48 ancom 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
49 pm3.24 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ¬ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
5049bifal 1553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5147, 48, 503bitri 299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5251ralbii 3165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ∀𝑣𝑉 ⊥)
53 r19.3rzv 4444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (𝑉 ≠ ∅ → (⊥ ↔ ∀𝑣𝑉 ⊥))
54 falim 1554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
5553, 54syl6bir 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (𝑉 ≠ ∅ → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5655adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5756com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 ⊥ → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5852, 57sylbi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5944, 58sylbir 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
6059ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
6143, 60syl6bi 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6261com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6338, 41, 623syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6463ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6564com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑉) ∈ (ℤ‘2) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6665adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6766com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6867com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
69683ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7036, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7170impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
7271impcom 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
7318frrusgrord 28120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
7473imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
75 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → 𝐾 = 2)
76 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → (𝐾 − 1) = (2 − 1))
7775, 76oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐾 = 2 → (𝐾 · (𝐾 − 1)) = (2 · (2 − 1)))
7877oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = ((2 · (2 − 1)) + 1))
79 2m1e1 11764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 − 1) = 1
8079oveq2i 7167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · (2 − 1)) = (2 · 1)
81 2t1e2 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · 1) = 2
8280, 81eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (2 · (2 − 1)) = 2
8382oveq1i 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((2 · (2 − 1)) + 1) = (2 + 1)
84 2p1e3 11780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (2 + 1) = 3
8583, 84eqtri 2844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((2 · (2 − 1)) + 1) = 3
8678, 85syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = 3)
8786eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) ↔ (♯‘𝑉) = 3))
88 pm2.21 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
8988ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9089com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑉) = 3 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9187, 90syl6bi 255 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9274, 91syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 2 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9318frgrreg 28173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
9493imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9572, 92, 94mpjaod 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9695exp32 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9796com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9897com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9998exp4c 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 2 → ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10099com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
101100com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
102101ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
103102com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
104103com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1051043imp 1107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
106105com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
10734, 106pm2.61i 184 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1081073exp 1115 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
10910, 108sylbir 237 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
110109ex 415 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1119, 110syl5bir 245 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
112111com25 99 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1138, 112sylbir 237 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0) → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
114113ex 415 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))))
115114impcomd 414 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
116115com14 96 . . . . . . . . . . . . . . . 16 (𝑉 ≠ ∅ → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1177, 116mpcom 38 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
118117ex 415 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
119118com14 96 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1204, 119syl5bir 245 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
121120com24 95 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1221213imp 1107 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
123122com25 99 . . . . . . . . 9 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (𝐺 RegUSGraph 𝐾 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
124123imp 409 . . . . . . . 8 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
125124com14 96 . . . . . . 7 (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1261253imp 1107 . . . . . 6 ((¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1273, 126sylbi 219 . . . . 5 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1282, 127pm2.61i 184 . . . 4 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1291283exp1 1348 . . 3 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1301, 129mpcom 38 . 2 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1311303imp21 1110 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wfal 1549  wex 1780  wcel 2114  wne 3016  wnel 3123  wral 3138  Vcvv 3494  c0 4291  {cpr 4569   class class class wbr 5066  cfv 6355  (class class class)co 7156  Fincfn 8509  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870  cn 11638  2c2 11693  3c3 11694  0cn0 11898  0*cxnn0 11968  cuz 12244  chash 13691  Vtxcvtx 26781  USGraphcusgr 26934  VtxDegcvtxdg 27247   RegUSGraph crusgr 27338   FriendGraph cfrgr 28037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-xadd 12509  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-reps 14131  df-csh 14151  df-s2 14210  df-s3 14211  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-gcd 15844  df-prm 16016  df-phi 16103  df-vtx 26783  df-iedg 26784  df-edg 26833  df-uhgr 26843  df-ushgr 26844  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-fusgr 27099  df-nbgr 27115  df-vtxdg 27248  df-rgr 27339  df-rusgr 27340  df-wlks 27381  df-wlkson 27382  df-trls 27474  df-trlson 27475  df-pths 27497  df-spths 27498  df-pthson 27499  df-spthson 27500  df-wwlks 27608  df-wwlksn 27609  df-wwlksnon 27610  df-wspthsn 27611  df-wspthsnon 27612  df-clwwlk 27760  df-clwwlkn 27803  df-clwwlknon 27867  df-conngr 27966  df-frgr 28038
This theorem is referenced by:  frgrregord13  28175
  Copyright terms: Public domain W3C validator