MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord013 Structured version   Visualization version   GIF version

Theorem frgrregord013 27711
Description: If a finite friendship graph is 𝐾-regular, then it must have order 0, 1 or 3. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord013 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord013
Dummy variables 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashcl 13349 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 ax-1 6 . . . . 5 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
3 3ioran 1131 . . . . . 6 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) ↔ (¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3))
4 df-ne 2938 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 ↔ ¬ (♯‘𝑉) = 0)
5 hasheq0 13356 . . . . . . . . . . . . . . . . . 18 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
65necon3bid 2981 . . . . . . . . . . . . . . . . 17 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
76biimpa 468 . . . . . . . . . . . . . . . 16 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → 𝑉 ≠ ∅)
8 elnnne0 11554 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑉) ∈ ℕ ↔ ((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0))
9 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
10 eluz2b3 11963 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ (ℤ‘2) ↔ ((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1))
11 hash2prde 13453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}))
12 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑎 ∈ V
1312a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑎 ∈ V)
14 vex 3353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑏 ∈ V
1514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑏 ∈ V)
16 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎𝑏𝑎𝑏)
1713, 15, 163jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎𝑏 → (𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏))
18 frgrreggt1.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑉 = (Vtx‘𝐺)
1918eqeq1i 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
2019biimpi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑉 = {𝑎, 𝑏} → (Vtx‘𝐺) = {𝑎, 𝑏})
21 nfrgr2v 27552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑎 ∈ V ∧ 𝑏 ∈ V ∧ 𝑎𝑏) ∧ (Vtx‘𝐺) = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
2217, 20, 21syl2an 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝐺 ∉ FriendGraph )
23 df-nel 3041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
2422, 23sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ¬ 𝐺 ∈ FriendGraph )
2524pm2.21d 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2625com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2726exlimivv 2027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑎𝑏(𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2811, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
2928ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3029com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3130com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
3231a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
33323imp 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
35 eqid 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3618, 35rusgrprop0 26754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
37 eluz2gt1 11961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((♯‘𝑉) ∈ (ℤ‘2) → 1 < (♯‘𝑉))
3837anim2i 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)))
3938ancoms 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → (𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)))
4018vdgn0frgrv2 27575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (1 < (♯‘𝑉) → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4140impancom 443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → (𝑣𝑉 → ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
4241ralrimiv 3112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
43 eqeq2 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 (𝐾 = 0 → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0))
4443ralbidv 3133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 ↔ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0))
45 r19.26 3211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
46 nne 2941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ↔ ((VtxDeg‘𝐺)‘𝑣) = 0)
4746bicomi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (((VtxDeg‘𝐺)‘𝑣) = 0 ↔ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
4847anbi1i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
49 ancom 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0))
50 pm3.24 391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ¬ (((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0)
5150bifal 1669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ((((VtxDeg‘𝐺)‘𝑣) ≠ 0 ∧ ¬ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5248, 49, 513bitri 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ⊥)
5352ralbii 3127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) ↔ ∀𝑣𝑉 ⊥)
54 r19.3rzv 4223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (𝑉 ≠ ∅ → (⊥ ↔ ∀𝑣𝑉 ⊥))
55 falim 1670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
5654, 55syl6bir 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (𝑉 ≠ ∅ → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5756adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ⊥ → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5857com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 (∀𝑣𝑉 ⊥ → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
5953, 58sylbi 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
6045, 59sylbir 226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
6160ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
6244, 61syl6bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6362com4t 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 0 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6439, 42, 633syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
6564ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6665com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝑉) ∈ (ℤ‘2) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6766adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6867com15 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
6968com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
70693ad2ant3 1165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7136, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐺RegUSGraph𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
7271impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
7372impcom 396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾)) → (𝐾 = 0 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
7418frrusgrord 27621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
7574imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾)) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))
76 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐾 = 2 → 𝐾 = 2)
77 oveq1 6849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝐾 = 2 → (𝐾 − 1) = (2 − 1))
7876, 77oveq12d 6860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐾 = 2 → (𝐾 · (𝐾 − 1)) = (2 · (2 − 1)))
7978oveq1d 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = ((2 · (2 − 1)) + 1))
80 2m1e1 11405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (2 − 1) = 1
8180oveq2i 6853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 · (2 − 1)) = (2 · 1)
82 2t1e2 11441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (2 · 1) = 2
8381, 82eqtri 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (2 · (2 − 1)) = 2
8483oveq1i 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((2 · (2 − 1)) + 1) = (2 + 1)
85 2p1e3 11421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (2 + 1) = 3
8684, 85eqtri 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((2 · (2 − 1)) + 1) = 3
8779, 86syl6eq 2815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 = 2 → ((𝐾 · (𝐾 − 1)) + 1) = 3)
8887eqeq2d 2775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) ↔ (♯‘𝑉) = 3))
89 pm2.21 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9089ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 3 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9190com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((♯‘𝑉) = 3 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9288, 91syl6bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾 = 2 → ((♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9375, 92syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾)) → (𝐾 = 2 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
9418frgrreg 27710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
9594imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9673, 93, 95mpjaod 886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾)) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
9796exp32 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9897com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
9998com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (((¬ (♯‘𝑉) = 3 ∧ ¬ (♯‘𝑉) = 2) ∧ (♯‘𝑉) ∈ (ℤ‘2)) → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
10099exp4c 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 2 → ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
101100com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 3 → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
102101com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
103102ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
104103com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → ((♯‘𝑉) ∈ (ℤ‘2) → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
105104com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1061053imp 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 2 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
107106com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (♯‘𝑉) = 2 → (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
10834, 107pm2.61i 176 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((♯‘𝑉) ∈ (ℤ‘2) ∧ 𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1091083exp 1148 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ (ℤ‘2) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
11010, 109sylbir 226 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑉) ∈ ℕ ∧ (♯‘𝑉) ≠ 1) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
111110ex 401 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1129, 111syl5bir 234 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
113112com25 99 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑉) ∈ ℕ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1148, 113sylbir 226 . . . . . . . . . . . . . . . . . . . 20 (((♯‘𝑉) ∈ ℕ0 ∧ (♯‘𝑉) ≠ 0) → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
115114ex 401 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))))
116115com23 86 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))))
117116impd 398 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
118117com14 96 . . . . . . . . . . . . . . . 16 (𝑉 ≠ ∅ → ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1197, 118mpcom 38 . . . . . . . . . . . . . . 15 ((𝑉 ∈ Fin ∧ (♯‘𝑉) ≠ 0) → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))))
120119ex 401 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
121120com14 96 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → ((♯‘𝑉) ≠ 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1224, 121syl5bir 234 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (¬ (♯‘𝑉) = 0 → (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
123122com24 95 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))))
1241233imp 1137 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
125124com25 99 . . . . . . . . 9 (((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) → (𝐺RegUSGraph𝐾 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))))
126125imp 395 . . . . . . . 8 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → (¬ (♯‘𝑉) = 0 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
127126com14 96 . . . . . . 7 (¬ (♯‘𝑉) = 0 → (¬ (♯‘𝑉) = 1 → (¬ (♯‘𝑉) = 3 → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1281273imp 1137 . . . . . 6 ((¬ (♯‘𝑉) = 0 ∧ ¬ (♯‘𝑉) = 1 ∧ ¬ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1293, 128sylbi 208 . . . . 5 (¬ ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1302, 129pm2.61i 176 . . . 4 ((((♯‘𝑉) ∈ ℕ0𝑉 ∈ Fin ∧ 𝐺 ∈ FriendGraph ) ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1311303exp1 1461 . . 3 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
1321, 131mpcom 38 . 2 (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1331323imp21 1141 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺RegUSGraph𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wfal 1665  wex 1874  wcel 2155  wne 2937  wnel 3040  wral 3055  Vcvv 3350  c0 4079  {cpr 4336   class class class wbr 4809  cfv 6068  (class class class)co 6842  Fincfn 8160  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194   < clt 10328  cmin 10520  cn 11274  2c2 11327  3c3 11328  0cn0 11538  0*cxnn0 11610  cuz 11886  chash 13321  Vtxcvtx 26165  USGraphcusgr 26322  VtxDegcvtxdg 26652  RegUSGraphcrusgr 26743   FriendGraph cfrgr 27536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-ac2 9538  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-ec 7949  df-qs 7953  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-ac 9190  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-rp 12029  df-xadd 12147  df-ico 12383  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13487  df-lsw 13534  df-concat 13542  df-s1 13567  df-substr 13617  df-pfx 13662  df-reps 13793  df-csh 13814  df-s2 13877  df-s3 13878  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-dvds 15266  df-gcd 15498  df-prm 15666  df-phi 15750  df-vtx 26167  df-iedg 26168  df-edg 26217  df-uhgr 26230  df-ushgr 26231  df-upgr 26254  df-umgr 26255  df-uspgr 26323  df-usgr 26324  df-fusgr 26488  df-nbgr 26504  df-vtxdg 26653  df-rgr 26744  df-rusgr 26745  df-wlks 26786  df-wlkson 26787  df-trls 26881  df-trlson 26882  df-pths 26904  df-spths 26905  df-pthson 26906  df-spthson 26907  df-wwlks 27015  df-wwlksn 27016  df-wwlksnon 27017  df-wspthsn 27018  df-wspthsnon 27019  df-clwwlk 27209  df-clwwlkn 27262  df-clwwlknon 27358  df-conngr 27465  df-frgr 27537
This theorem is referenced by:  frgrregord13  27712
  Copyright terms: Public domain W3C validator