MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmftp Structured version   Visualization version   GIF version

Theorem lcmftp 16669
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 16677, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.)
Assertion
Ref Expression
lcmftp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))

Proof of Theorem lcmftp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12621 . . . . . . 7 0 ∈ ℤ
2 eltpg 4690 . . . . . . 7 (0 ∈ ℤ → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
31, 2ax-mp 5 . . . . . 6 (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))
43biimpri 228 . . . . 5 ((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → 0 ∈ {𝐴, 𝐵, 𝐶})
5 tpssi 4842 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
64, 5anim12ci 614 . . . 4 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}))
7 lcmf0val 16655 . . . 4 (({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
86, 7syl 17 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
9 0zd 12622 . . . . . . . . . 10 (𝐶 ∈ ℤ → 0 ∈ ℤ)
10 lcmcom 16626 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = (𝐶 lcm 0))
119, 10mpancom 688 . . . . . . . . 9 (𝐶 ∈ ℤ → (0 lcm 𝐶) = (𝐶 lcm 0))
12 lcm0val 16627 . . . . . . . . 9 (𝐶 ∈ ℤ → (𝐶 lcm 0) = 0)
1311, 12eqtrd 2774 . . . . . . . 8 (𝐶 ∈ ℤ → (0 lcm 𝐶) = 0)
1413eqcomd 2740 . . . . . . 7 (𝐶 ∈ ℤ → 0 = (0 lcm 𝐶))
15143ad2ant3 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐶))
1615adantl 481 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐶))
17 0zd 12622 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 0 ∈ ℤ)
18 lcmcom 16626 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 lcm 𝐵) = (𝐵 lcm 0))
1917, 18mpancom 688 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 lcm 𝐵) = (𝐵 lcm 0))
20 lcm0val 16627 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵 lcm 0) = 0)
2119, 20eqtrd 2774 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 lcm 𝐵) = 0)
2221eqcomd 2740 . . . . . . . 8 (𝐵 ∈ ℤ → 0 = (0 lcm 𝐵))
23223ad2ant2 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐵))
2423adantl 481 . . . . . 6 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐵))
2524oveq1d 7445 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((0 lcm 𝐵) lcm 𝐶))
26 oveq1 7437 . . . . . . 7 (0 = 𝐴 → (0 lcm 𝐵) = (𝐴 lcm 𝐵))
2726oveq1d 7445 . . . . . 6 (0 = 𝐴 → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2827adantr 480 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2916, 25, 283eqtrd 2778 . . . 4 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
30 lcm0val 16627 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 lcm 0) = 0)
3130eqcomd 2740 . . . . . . . 8 (𝐴 ∈ ℤ → 0 = (𝐴 lcm 0))
32313ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (𝐴 lcm 0))
3332adantl 481 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (𝐴 lcm 0))
3433oveq1d 7445 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((𝐴 lcm 0) lcm 𝐶))
35133ad2ant3 1134 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = 0)
3635adantl 481 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = 0)
37 oveq2 7438 . . . . . . 7 (0 = 𝐵 → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3837adantr 480 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3938oveq1d 7445 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 0) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
4034, 36, 393eqtr3d 2782 . . . 4 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
41 lcmcl 16634 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℕ0)
4241nn0zd 12636 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
43 lcm0val 16627 . . . . . . . 8 ((𝐴 lcm 𝐵) ∈ ℤ → ((𝐴 lcm 𝐵) lcm 0) = 0)
4443eqcomd 2740 . . . . . . 7 ((𝐴 lcm 𝐵) ∈ ℤ → 0 = ((𝐴 lcm 𝐵) lcm 0))
4542, 44syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
46453adant3 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
47 oveq2 7438 . . . . 5 (0 = 𝐶 → ((𝐴 lcm 𝐵) lcm 0) = ((𝐴 lcm 𝐵) lcm 𝐶))
4846, 47sylan9eqr 2796 . . . 4 ((0 = 𝐶 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
4929, 40, 483jaoian 1429 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
508, 49eqtrd 2774 . 2 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
51423adant3 1131 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
52 simp3 1137 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
5351, 52jca 511 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
5453adantl 481 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
55 dvdslcm 16631 . . . . . . . 8 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
5654, 55syl 17 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
57 dvdslcm 16631 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
58573adant3 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
59 simp1 1135 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
60 lcmcl 16634 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6261nn0zd 12636 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)
6359, 51, 623jca 1127 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
64 dvdstr 16327 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6665expd 415 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6766com12 32 . . . . . . . . . . . . . 14 (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6867adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6958, 68mpcom 38 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7069adantl 481 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7170com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7271adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7372impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
74 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → 𝐵 ∥ (𝐴 lcm 𝐵))
7557, 74syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
76753adant3 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
7776adantl 481 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ (𝐴 lcm 𝐵))
78 simp2 1136 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
7978, 51, 623jca 1127 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
8079adantl 481 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
81 dvdstr 16327 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8280, 81syl 17 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8377, 82mpand 695 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8483com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8584adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8685impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
87 simpr 484 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8887adantl 481 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8973, 86, 883jca 1127 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9056, 89mpdan 687 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
91 breq1 5150 . . . . . . . 8 (𝑚 = 𝐴 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
92 breq1 5150 . . . . . . . 8 (𝑚 = 𝐵 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
93 breq1 5150 . . . . . . . 8 (𝑚 = 𝐶 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9491, 92, 93raltpg 4702 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9594adantl 481 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9690, 95mpbird 257 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
97 breq1 5150 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝑘𝐴𝑘))
98 breq1 5150 . . . . . . . . 9 (𝑚 = 𝐵 → (𝑚𝑘𝐵𝑘))
99 breq1 5150 . . . . . . . . 9 (𝑚 = 𝐶 → (𝑚𝑘𝐶𝑘))
10097, 98, 99raltpg 4702 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
101100ad2antlr 727 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
102 simpr 484 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10351ad2antlr 727 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∈ ℤ)
10452ad2antlr 727 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℤ)
105102, 103, 1043jca 1127 . . . . . . . . . 10 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
106105adantr 480 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
107 3ioran 1105 . . . . . . . . . . . . . . . . 17 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ↔ (¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶))
108 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐴𝐴 = 0)
109108notbii 320 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0)
110 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐵𝐵 = 0)
111110notbii 320 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0)
112109, 111anbi12i 628 . . . . . . . . . . . . . . . . . . . 20 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
113112biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
114 ioran 985 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
115113, 114sylibr 234 . . . . . . . . . . . . . . . . . 18 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1161153adant3 1131 . . . . . . . . . . . . . . . . 17 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
117107, 116sylbi 217 . . . . . . . . . . . . . . . 16 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
118 id 22 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
1191183adant3 1131 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
120117, 119anim12ci 614 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
121 lcmn0cl 16630 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 lcm 𝐵) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . . 14 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
123 nnne0 12297 . . . . . . . . . . . . . . 15 ((𝐴 lcm 𝐵) ∈ ℕ → (𝐴 lcm 𝐵) ≠ 0)
124123neneqd 2942 . . . . . . . . . . . . . 14 ((𝐴 lcm 𝐵) ∈ ℕ → ¬ (𝐴 lcm 𝐵) = 0)
125122, 124syl 17 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
126 eqcom 2741 . . . . . . . . . . . . . . . . . 18 (0 = 𝐶𝐶 = 0)
127126notbii 320 . . . . . . . . . . . . . . . . 17 (¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0)
128127biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐶 → ¬ 𝐶 = 0)
1291283ad2ant3 1134 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ 𝐶 = 0)
130107, 129sylbi 217 . . . . . . . . . . . . . 14 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 𝐶 = 0)
131130adantr 480 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐶 = 0)
132125, 131jca 511 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
133132adantr 480 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
134133adantr 480 . . . . . . . . . 10 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
135 ioran 985 . . . . . . . . . 10 (¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0) ↔ (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
136134, 135sylibr 234 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
137119adantl 481 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
138 nnz 12631 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
139137, 138anim12ci 614 . . . . . . . . . . . . . 14 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
140 3anass 1094 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
141139, 140sylibr 234 . . . . . . . . . . . . 13 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
142 lcmdvds 16641 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
143141, 142syl 17 . . . . . . . . . . . 12 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
144143com12 32 . . . . . . . . . . 11 ((𝐴𝑘𝐵𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
1451443adant3 1131 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
146145impcom 407 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝐴 lcm 𝐵) ∥ 𝑘)
147 simp3 1137 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → 𝐶𝑘)
148147adantl 481 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → 𝐶𝑘)
149 lcmledvds 16632 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → (((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
150149imp 406 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) ∧ ((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
151106, 136, 146, 148, 150syl22anc 839 . . . . . . . 8 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
152151ex 412 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
153101, 152sylbid 240 . . . . . 6 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
154153ralrimiva 3143 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
15596, 154jca 511 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))
156109biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐴 → ¬ 𝐴 = 0)
157111biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐵 → ¬ 𝐵 = 0)
158156, 157anim12i 613 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
159158, 114sylibr 234 . . . . . . . . . . . . . 14 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1601593adant3 1131 . . . . . . . . . . . . 13 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
161107, 160sylbi 217 . . . . . . . . . . . 12 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
162161, 119anim12ci 614 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
163162, 121syl 17 . . . . . . . . . 10 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
164163, 124syl 17 . . . . . . . . 9 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
165164, 131jca 511 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
166165, 135sylibr 234 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
16754, 166jca 511 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)))
168 lcmn0cl 16630 . . . . . 6 ((((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
169167, 168syl 17 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
1705adantl 481 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
171 tpfi 9362 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
172171a1i 11 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ∈ Fin)
1733a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
174173biimpd 229 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} → (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
175174con3d 152 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶}))
176175impcom 407 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
177 df-nel 3044 . . . . . 6 (0 ∉ {𝐴, 𝐵, 𝐶} ↔ ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
178176, 177sylibr 234 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 ∉ {𝐴, 𝐵, 𝐶})
179 lcmf 16666 . . . . 5 ((((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ ∧ ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ {𝐴, 𝐵, 𝐶} ∈ Fin ∧ 0 ∉ {𝐴, 𝐵, 𝐶})) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
180169, 170, 172, 178, 179syl13anc 1371 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
181155, 180mpbird 257 . . 3 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}))
182181eqcomd 2740 . 2 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
18350, 182pm2.61ian 812 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1536  wcel 2105  wnel 3043  wral 3058  wss 3962  {ctp 4634   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  0cc0 11152  cle 11293  cn 12263  0cn0 12523  cz 12610  cdvds 16286   lcm clcm 16621  lcmclcmf 16622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936  df-dvds 16287  df-gcd 16528  df-lcm 16623  df-lcmf 16624
This theorem is referenced by:  lcmf2a3a4e12  16680
  Copyright terms: Public domain W3C validator