Step | Hyp | Ref
| Expression |
1 | | 0z 12260 |
. . . . . . 7
⊢ 0 ∈
ℤ |
2 | | eltpg 4618 |
. . . . . . 7
⊢ (0 ∈
ℤ → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ (0 ∈
{𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)) |
4 | 3 | biimpri 227 |
. . . . 5
⊢ ((0 =
𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → 0 ∈ {𝐴, 𝐵, 𝐶}) |
5 | | tpssi 4766 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {𝐴, 𝐵, 𝐶} ⊆ ℤ) |
6 | 4, 5 | anim12ci 613 |
. . . 4
⊢ (((0 =
𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶})) |
7 | | lcmf0val 16255 |
. . . 4
⊢ (({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0) |
8 | 6, 7 | syl 17 |
. . 3
⊢ (((0 =
𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) →
(lcm‘{𝐴, 𝐵, 𝐶}) = 0) |
9 | | 0zd 12261 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℤ → 0 ∈
ℤ) |
10 | | lcmcom 16226 |
. . . . . . . . . 10
⊢ ((0
∈ ℤ ∧ 𝐶
∈ ℤ) → (0 lcm 𝐶) = (𝐶 lcm 0)) |
11 | 9, 10 | mpancom 684 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → (0 lcm
𝐶) = (𝐶 lcm 0)) |
12 | | lcm0val 16227 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℤ → (𝐶 lcm 0) = 0) |
13 | 11, 12 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → (0 lcm
𝐶) = 0) |
14 | 13 | eqcomd 2744 |
. . . . . . 7
⊢ (𝐶 ∈ ℤ → 0 = (0
lcm 𝐶)) |
15 | 14 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0
lcm 𝐶)) |
16 | 15 | adantl 481 |
. . . . 5
⊢ ((0 =
𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐶)) |
17 | | 0zd 12261 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → 0 ∈
ℤ) |
18 | | lcmcom 16226 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 𝐵
∈ ℤ) → (0 lcm 𝐵) = (𝐵 lcm 0)) |
19 | 17, 18 | mpancom 684 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℤ → (0 lcm
𝐵) = (𝐵 lcm 0)) |
20 | | lcm0val 16227 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℤ → (𝐵 lcm 0) = 0) |
21 | 19, 20 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℤ → (0 lcm
𝐵) = 0) |
22 | 21 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 0 = (0
lcm 𝐵)) |
23 | 22 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0
lcm 𝐵)) |
24 | 23 | adantl 481 |
. . . . . 6
⊢ ((0 =
𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐵)) |
25 | 24 | oveq1d 7270 |
. . . . 5
⊢ ((0 =
𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((0 lcm 𝐵) lcm 𝐶)) |
26 | | oveq1 7262 |
. . . . . . 7
⊢ (0 =
𝐴 → (0 lcm 𝐵) = (𝐴 lcm 𝐵)) |
27 | 26 | oveq1d 7270 |
. . . . . 6
⊢ (0 =
𝐴 → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
28 | 27 | adantr 480 |
. . . . 5
⊢ ((0 =
𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
29 | 16, 25, 28 | 3eqtrd 2782 |
. . . 4
⊢ ((0 =
𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶)) |
30 | | lcm0val 16227 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (𝐴 lcm 0) = 0) |
31 | 30 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → 0 =
(𝐴 lcm 0)) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 =
(𝐴 lcm 0)) |
33 | 32 | adantl 481 |
. . . . . 6
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (𝐴 lcm 0)) |
34 | 33 | oveq1d 7270 |
. . . . 5
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((𝐴 lcm 0) lcm 𝐶)) |
35 | 13 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm
𝐶) = 0) |
36 | 35 | adantl 481 |
. . . . 5
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = 0) |
37 | | oveq2 7263 |
. . . . . . 7
⊢ (0 =
𝐵 → (𝐴 lcm 0) = (𝐴 lcm 𝐵)) |
38 | 37 | adantr 480 |
. . . . . 6
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 0) = (𝐴 lcm 𝐵)) |
39 | 38 | oveq1d 7270 |
. . . . 5
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 0) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
40 | 34, 36, 39 | 3eqtr3d 2786 |
. . . 4
⊢ ((0 =
𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶)) |
41 | | lcmcl 16234 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈
ℕ0) |
42 | 41 | nn0zd 12353 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ) |
43 | | lcm0val 16227 |
. . . . . . . 8
⊢ ((𝐴 lcm 𝐵) ∈ ℤ → ((𝐴 lcm 𝐵) lcm 0) = 0) |
44 | 43 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝐴 lcm 𝐵) ∈ ℤ → 0 = ((𝐴 lcm 𝐵) lcm 0)) |
45 | 42, 44 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 =
((𝐴 lcm 𝐵) lcm 0)) |
46 | 45 | 3adant3 1130 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 =
((𝐴 lcm 𝐵) lcm 0)) |
47 | | oveq2 7263 |
. . . . 5
⊢ (0 =
𝐶 → ((𝐴 lcm 𝐵) lcm 0) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
48 | 46, 47 | sylan9eqr 2801 |
. . . 4
⊢ ((0 =
𝐶 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶)) |
49 | 29, 40, 48 | 3jaoian 1427 |
. . 3
⊢ (((0 =
𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶)) |
50 | 8, 49 | eqtrd 2778 |
. 2
⊢ (((0 =
𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) →
(lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
51 | 42 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ) |
52 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈
ℤ) |
53 | 51, 52 | jca 511 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
54 | 53 | adantl 481 |
. . . . . . . 8
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
55 | | dvdslcm 16231 |
. . . . . . . 8
⊢ (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
56 | 54, 55 | syl 17 |
. . . . . . 7
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
57 | | dvdslcm 16231 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵))) |
58 | 57 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵))) |
59 | | simp1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈
ℤ) |
60 | | lcmcl 16234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈
ℕ0) |
61 | 53, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈
ℕ0) |
62 | 61 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) |
63 | 59, 51, 62 | 3jca 1126 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)) |
64 | | dvdstr 15931 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
66 | 65 | expd 415 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))) |
67 | 66 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))) |
69 | 58, 68 | mpcom 38 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
70 | 69 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
71 | 70 | com12 32 |
. . . . . . . . . 10
⊢ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
72 | 71 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
73 | 72 | impcom 407 |
. . . . . . . 8
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) |
74 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → 𝐵 ∥ (𝐴 lcm 𝐵)) |
75 | 57, 74 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵)) |
76 | 75 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵)) |
77 | 76 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ (𝐴 lcm 𝐵)) |
78 | | simp2 1135 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈
ℤ) |
79 | 78, 51, 62 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)) |
80 | 79 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)) |
81 | | dvdstr 15931 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
83 | 77, 82 | mpand 691 |
. . . . . . . . . . 11
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
84 | 83 | com12 32 |
. . . . . . . . . 10
⊢ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
85 | 84 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
86 | 85 | impcom 407 |
. . . . . . . 8
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) |
87 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) |
88 | 87 | adantl 481 |
. . . . . . . 8
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) |
89 | 73, 86, 88 | 3jca 1126 |
. . . . . . 7
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
90 | 56, 89 | mpdan 683 |
. . . . . 6
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
91 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑚 = 𝐴 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
92 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑚 = 𝐵 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
93 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑚 = 𝐶 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) |
94 | 91, 92, 93 | raltpg 4631 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) →
(∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))) |
95 | 94 | adantl 481 |
. . . . . 6
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))) |
96 | 90, 95 | mpbird 256 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) |
97 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑚 = 𝐴 → (𝑚 ∥ 𝑘 ↔ 𝐴 ∥ 𝑘)) |
98 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑚 = 𝐵 → (𝑚 ∥ 𝑘 ↔ 𝐵 ∥ 𝑘)) |
99 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑚 = 𝐶 → (𝑚 ∥ 𝑘 ↔ 𝐶 ∥ 𝑘)) |
100 | 97, 98, 99 | raltpg 4631 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) →
(∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 ↔ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘))) |
101 | 100 | ad2antlr 723 |
. . . . . . 7
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 ↔ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘))) |
102 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
103 | 51 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∈ ℤ) |
104 | 52 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℤ) |
105 | 102, 103,
104 | 3jca 1126 |
. . . . . . . . . 10
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
106 | 105 | adantr 480 |
. . . . . . . . 9
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
107 | | 3ioran 1104 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ (0
= 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ↔ (¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶)) |
108 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 =
𝐴 ↔ 𝐴 = 0) |
109 | 108 | notbii 319 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
= 𝐴 ↔ ¬ 𝐴 = 0) |
110 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 =
𝐵 ↔ 𝐵 = 0) |
111 | 110 | notbii 319 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
= 𝐵 ↔ ¬ 𝐵 = 0) |
112 | 109, 111 | anbi12i 626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) |
113 | 112 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) |
114 | | ioran 980 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) |
115 | 113, 114 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
116 | 115 | 3adant3 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
117 | 107, 116 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢ (¬ (0
= 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
118 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ)) |
119 | 118 | 3adant3 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ)) |
120 | 117, 119 | anim12ci 613 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0))) |
121 | | lcmn0cl 16230 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 lcm 𝐵) ∈ ℕ) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ) |
123 | | nnne0 11937 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 lcm 𝐵) ∈ ℕ → (𝐴 lcm 𝐵) ≠ 0) |
124 | 123 | neneqd 2947 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 lcm 𝐵) ∈ ℕ → ¬ (𝐴 lcm 𝐵) = 0) |
125 | 122, 124 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0) |
126 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 =
𝐶 ↔ 𝐶 = 0) |
127 | 126 | notbii 319 |
. . . . . . . . . . . . . . . . 17
⊢ (¬ 0
= 𝐶 ↔ ¬ 𝐶 = 0) |
128 | 127 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
= 𝐶 → ¬ 𝐶 = 0) |
129 | 128 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . 15
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ 𝐶 = 0) |
130 | 107, 129 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (¬ (0
= 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 𝐶 = 0) |
131 | 130 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐶 = 0) |
132 | 125, 131 | jca 511 |
. . . . . . . . . . . 12
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0)) |
133 | 132 | adantr 480 |
. . . . . . . . . . 11
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0)) |
134 | 133 | adantr 480 |
. . . . . . . . . 10
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0)) |
135 | | ioran 980 |
. . . . . . . . . 10
⊢ (¬
((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0) ↔ (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0)) |
136 | 134, 135 | sylibr 233 |
. . . . . . . . 9
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) |
137 | 119 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
138 | | nnz 12272 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
139 | 137, 138 | anim12ci 613 |
. . . . . . . . . . . . . 14
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))) |
140 | | 3anass 1093 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈
ℤ))) |
141 | 139, 140 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
142 | | lcmdvds 16241 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘)) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . . 12
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘)) |
144 | 143 | com12 32 |
. . . . . . . . . . 11
⊢ ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘)) |
145 | 144 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘)) |
146 | 145 | impcom 407 |
. . . . . . . . 9
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → (𝐴 lcm 𝐵) ∥ 𝑘) |
147 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘) → 𝐶 ∥ 𝑘) |
148 | 147 | adantl 481 |
. . . . . . . . 9
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → 𝐶 ∥ 𝑘) |
149 | | lcmledvds 16232 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → (((𝐴 lcm 𝐵) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)) |
150 | 149 | imp 406 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) ∧ ((𝐴 lcm 𝐵) ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘) |
151 | 106, 136,
146, 148, 150 | syl22anc 835 |
. . . . . . . 8
⊢ ((((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘) |
152 | 151 | ex 412 |
. . . . . . 7
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴 ∥ 𝑘 ∧ 𝐵 ∥ 𝑘 ∧ 𝐶 ∥ 𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)) |
153 | 101, 152 | sylbid 239 |
. . . . . 6
⊢ (((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)) |
154 | 153 | ralrimiva 3107 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)) |
155 | 96, 154 | jca 511 |
. . . 4
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))) |
156 | 109 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
= 𝐴 → ¬ 𝐴 = 0) |
157 | 111 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 0
= 𝐵 → ¬ 𝐵 = 0) |
158 | 156, 157 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0)) |
159 | 158, 114 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
160 | 159 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((¬ 0
= 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
161 | 107, 160 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (¬ (0
= 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
162 | 161, 119 | anim12ci 613 |
. . . . . . . . . . 11
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0))) |
163 | 162, 121 | syl 17 |
. . . . . . . . . 10
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ) |
164 | 163, 124 | syl 17 |
. . . . . . . . 9
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0) |
165 | 164, 131 | jca 511 |
. . . . . . . 8
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0)) |
166 | 165, 135 | sylibr 233 |
. . . . . . 7
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) |
167 | 54, 166 | jca 511 |
. . . . . 6
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))) |
168 | | lcmn0cl 16230 |
. . . . . 6
⊢ ((((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ) |
169 | 167, 168 | syl 17 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ) |
170 | 5 | adantl 481 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ⊆ ℤ) |
171 | | tpfi 9020 |
. . . . . 6
⊢ {𝐴, 𝐵, 𝐶} ∈ Fin |
172 | 171 | a1i 11 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ∈ Fin) |
173 | 3 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0
∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))) |
174 | 173 | biimpd 228 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0
∈ {𝐴, 𝐵, 𝐶} → (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))) |
175 | 174 | con3d 152 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶})) |
176 | 175 | impcom 407 |
. . . . . 6
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 0 ∈
{𝐴, 𝐵, 𝐶}) |
177 | | df-nel 3049 |
. . . . . 6
⊢ (0
∉ {𝐴, 𝐵, 𝐶} ↔ ¬ 0 ∈ {𝐴, 𝐵, 𝐶}) |
178 | 176, 177 | sylibr 233 |
. . . . 5
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 ∉ {𝐴, 𝐵, 𝐶}) |
179 | | lcmf 16266 |
. . . . 5
⊢ ((((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ ∧ ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ {𝐴, 𝐵, 𝐶} ∈ Fin ∧ 0 ∉ {𝐴, 𝐵, 𝐶})) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))) |
180 | 169, 170,
172, 178, 179 | syl13anc 1370 |
. . . 4
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ 𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))) |
181 | 155, 180 | mpbird 256 |
. . 3
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶})) |
182 | 181 | eqcomd 2744 |
. 2
⊢ ((¬
(0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) →
(lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶)) |
183 | 50, 182 | pm2.61ian 808 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) →
(lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶)) |