MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmftp Structured version   Visualization version   GIF version

Theorem lcmftp 16655
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 16663, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.)
Assertion
Ref Expression
lcmftp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))

Proof of Theorem lcmftp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12599 . . . . . . 7 0 ∈ ℤ
2 eltpg 4662 . . . . . . 7 (0 ∈ ℤ → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
31, 2ax-mp 5 . . . . . 6 (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))
43biimpri 228 . . . . 5 ((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → 0 ∈ {𝐴, 𝐵, 𝐶})
5 tpssi 4814 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
64, 5anim12ci 614 . . . 4 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}))
7 lcmf0val 16641 . . . 4 (({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
86, 7syl 17 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
9 0zd 12600 . . . . . . . . . 10 (𝐶 ∈ ℤ → 0 ∈ ℤ)
10 lcmcom 16612 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = (𝐶 lcm 0))
119, 10mpancom 688 . . . . . . . . 9 (𝐶 ∈ ℤ → (0 lcm 𝐶) = (𝐶 lcm 0))
12 lcm0val 16613 . . . . . . . . 9 (𝐶 ∈ ℤ → (𝐶 lcm 0) = 0)
1311, 12eqtrd 2770 . . . . . . . 8 (𝐶 ∈ ℤ → (0 lcm 𝐶) = 0)
1413eqcomd 2741 . . . . . . 7 (𝐶 ∈ ℤ → 0 = (0 lcm 𝐶))
15143ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐶))
1615adantl 481 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐶))
17 0zd 12600 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 0 ∈ ℤ)
18 lcmcom 16612 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 lcm 𝐵) = (𝐵 lcm 0))
1917, 18mpancom 688 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 lcm 𝐵) = (𝐵 lcm 0))
20 lcm0val 16613 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵 lcm 0) = 0)
2119, 20eqtrd 2770 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 lcm 𝐵) = 0)
2221eqcomd 2741 . . . . . . . 8 (𝐵 ∈ ℤ → 0 = (0 lcm 𝐵))
23223ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐵))
2423adantl 481 . . . . . 6 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐵))
2524oveq1d 7420 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((0 lcm 𝐵) lcm 𝐶))
26 oveq1 7412 . . . . . . 7 (0 = 𝐴 → (0 lcm 𝐵) = (𝐴 lcm 𝐵))
2726oveq1d 7420 . . . . . 6 (0 = 𝐴 → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2827adantr 480 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2916, 25, 283eqtrd 2774 . . . 4 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
30 lcm0val 16613 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 lcm 0) = 0)
3130eqcomd 2741 . . . . . . . 8 (𝐴 ∈ ℤ → 0 = (𝐴 lcm 0))
32313ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (𝐴 lcm 0))
3332adantl 481 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (𝐴 lcm 0))
3433oveq1d 7420 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((𝐴 lcm 0) lcm 𝐶))
35133ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = 0)
3635adantl 481 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = 0)
37 oveq2 7413 . . . . . . 7 (0 = 𝐵 → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3837adantr 480 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3938oveq1d 7420 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 0) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
4034, 36, 393eqtr3d 2778 . . . 4 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
41 lcmcl 16620 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℕ0)
4241nn0zd 12614 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
43 lcm0val 16613 . . . . . . . 8 ((𝐴 lcm 𝐵) ∈ ℤ → ((𝐴 lcm 𝐵) lcm 0) = 0)
4443eqcomd 2741 . . . . . . 7 ((𝐴 lcm 𝐵) ∈ ℤ → 0 = ((𝐴 lcm 𝐵) lcm 0))
4542, 44syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
46453adant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
47 oveq2 7413 . . . . 5 (0 = 𝐶 → ((𝐴 lcm 𝐵) lcm 0) = ((𝐴 lcm 𝐵) lcm 𝐶))
4846, 47sylan9eqr 2792 . . . 4 ((0 = 𝐶 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
4929, 40, 483jaoian 1432 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
508, 49eqtrd 2770 . 2 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
51423adant3 1132 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
52 simp3 1138 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
5351, 52jca 511 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
5453adantl 481 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
55 dvdslcm 16617 . . . . . . . 8 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
5654, 55syl 17 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
57 dvdslcm 16617 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
58573adant3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
59 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
60 lcmcl 16620 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6261nn0zd 12614 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)
6359, 51, 623jca 1128 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
64 dvdstr 16313 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6665expd 415 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6766com12 32 . . . . . . . . . . . . . 14 (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6867adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6958, 68mpcom 38 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7069adantl 481 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7170com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7271adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7372impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
74 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → 𝐵 ∥ (𝐴 lcm 𝐵))
7557, 74syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
76753adant3 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
7776adantl 481 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ (𝐴 lcm 𝐵))
78 simp2 1137 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
7978, 51, 623jca 1128 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
8079adantl 481 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
81 dvdstr 16313 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8280, 81syl 17 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8377, 82mpand 695 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8483com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8584adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8685impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
87 simpr 484 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8887adantl 481 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8973, 86, 883jca 1128 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9056, 89mpdan 687 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
91 breq1 5122 . . . . . . . 8 (𝑚 = 𝐴 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
92 breq1 5122 . . . . . . . 8 (𝑚 = 𝐵 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
93 breq1 5122 . . . . . . . 8 (𝑚 = 𝐶 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9491, 92, 93raltpg 4674 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9594adantl 481 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9690, 95mpbird 257 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
97 breq1 5122 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝑘𝐴𝑘))
98 breq1 5122 . . . . . . . . 9 (𝑚 = 𝐵 → (𝑚𝑘𝐵𝑘))
99 breq1 5122 . . . . . . . . 9 (𝑚 = 𝐶 → (𝑚𝑘𝐶𝑘))
10097, 98, 99raltpg 4674 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
101100ad2antlr 727 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
102 simpr 484 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10351ad2antlr 727 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∈ ℤ)
10452ad2antlr 727 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℤ)
105102, 103, 1043jca 1128 . . . . . . . . . 10 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
106105adantr 480 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
107 3ioran 1105 . . . . . . . . . . . . . . . . 17 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ↔ (¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶))
108 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐴𝐴 = 0)
109108notbii 320 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0)
110 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐵𝐵 = 0)
111110notbii 320 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0)
112109, 111anbi12i 628 . . . . . . . . . . . . . . . . . . . 20 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
113112biimpi 216 . . . . . . . . . . . . . . . . . . 19 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
114 ioran 985 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
115113, 114sylibr 234 . . . . . . . . . . . . . . . . . 18 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1161153adant3 1132 . . . . . . . . . . . . . . . . 17 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
117107, 116sylbi 217 . . . . . . . . . . . . . . . 16 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
118 id 22 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
1191183adant3 1132 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
120117, 119anim12ci 614 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
121 lcmn0cl 16616 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 lcm 𝐵) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . . 14 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
123 nnne0 12274 . . . . . . . . . . . . . . 15 ((𝐴 lcm 𝐵) ∈ ℕ → (𝐴 lcm 𝐵) ≠ 0)
124123neneqd 2937 . . . . . . . . . . . . . 14 ((𝐴 lcm 𝐵) ∈ ℕ → ¬ (𝐴 lcm 𝐵) = 0)
125122, 124syl 17 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
126 eqcom 2742 . . . . . . . . . . . . . . . . . 18 (0 = 𝐶𝐶 = 0)
127126notbii 320 . . . . . . . . . . . . . . . . 17 (¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0)
128127biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐶 → ¬ 𝐶 = 0)
1291283ad2ant3 1135 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ 𝐶 = 0)
130107, 129sylbi 217 . . . . . . . . . . . . . 14 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 𝐶 = 0)
131130adantr 480 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐶 = 0)
132125, 131jca 511 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
133132adantr 480 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
134133adantr 480 . . . . . . . . . 10 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
135 ioran 985 . . . . . . . . . 10 (¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0) ↔ (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
136134, 135sylibr 234 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
137119adantl 481 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
138 nnz 12609 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
139137, 138anim12ci 614 . . . . . . . . . . . . . 14 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
140 3anass 1094 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
141139, 140sylibr 234 . . . . . . . . . . . . 13 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
142 lcmdvds 16627 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
143141, 142syl 17 . . . . . . . . . . . 12 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
144143com12 32 . . . . . . . . . . 11 ((𝐴𝑘𝐵𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
1451443adant3 1132 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
146145impcom 407 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝐴 lcm 𝐵) ∥ 𝑘)
147 simp3 1138 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → 𝐶𝑘)
148147adantl 481 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → 𝐶𝑘)
149 lcmledvds 16618 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → (((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
150149imp 406 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) ∧ ((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
151106, 136, 146, 148, 150syl22anc 838 . . . . . . . 8 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
152151ex 412 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
153101, 152sylbid 240 . . . . . 6 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
154153ralrimiva 3132 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
15596, 154jca 511 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))
156109biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐴 → ¬ 𝐴 = 0)
157111biimpi 216 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐵 → ¬ 𝐵 = 0)
158156, 157anim12i 613 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
159158, 114sylibr 234 . . . . . . . . . . . . . 14 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1601593adant3 1132 . . . . . . . . . . . . 13 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
161107, 160sylbi 217 . . . . . . . . . . . 12 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
162161, 119anim12ci 614 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
163162, 121syl 17 . . . . . . . . . 10 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
164163, 124syl 17 . . . . . . . . 9 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
165164, 131jca 511 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
166165, 135sylibr 234 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
16754, 166jca 511 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)))
168 lcmn0cl 16616 . . . . . 6 ((((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
169167, 168syl 17 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
1705adantl 481 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
171 tpfi 9337 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
172171a1i 11 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ∈ Fin)
1733a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
174173biimpd 229 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} → (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
175174con3d 152 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶}))
176175impcom 407 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
177 df-nel 3037 . . . . . 6 (0 ∉ {𝐴, 𝐵, 𝐶} ↔ ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
178176, 177sylibr 234 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 ∉ {𝐴, 𝐵, 𝐶})
179 lcmf 16652 . . . . 5 ((((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ ∧ ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ {𝐴, 𝐵, 𝐶} ∈ Fin ∧ 0 ∉ {𝐴, 𝐵, 𝐶})) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
180169, 170, 172, 178, 179syl13anc 1374 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
181155, 180mpbird 257 . . 3 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}))
182181eqcomd 2741 . 2 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
18350, 182pm2.61ian 811 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wnel 3036  wral 3051  wss 3926  {ctp 4605   class class class wbr 5119  cfv 6531  (class class class)co 7405  Fincfn 8959  0cc0 11129  cle 11270  cn 12240  0cn0 12501  cz 12588  cdvds 16272   lcm clcm 16607  lcmclcmf 16608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-dvds 16273  df-gcd 16514  df-lcm 16609  df-lcmf 16610
This theorem is referenced by:  lcmf2a3a4e12  16666
  Copyright terms: Public domain W3C validator