MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmftp Structured version   Visualization version   GIF version

Theorem lcmftp 16269
Description: The least common multiple of a triple of integers is the least common multiple of the third integer and the least common multiple of the first two integers. Although there would be a shorter proof using lcmfunsn 16277, this explicit proof (not based on induction) should be kept. (Proof modification is discouraged.) (Contributed by AV, 23-Aug-2020.)
Assertion
Ref Expression
lcmftp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))

Proof of Theorem lcmftp
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 12260 . . . . . . 7 0 ∈ ℤ
2 eltpg 4618 . . . . . . 7 (0 ∈ ℤ → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
31, 2ax-mp 5 . . . . . 6 (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶))
43biimpri 227 . . . . 5 ((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → 0 ∈ {𝐴, 𝐵, 𝐶})
5 tpssi 4766 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
64, 5anim12ci 613 . . . 4 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}))
7 lcmf0val 16255 . . . 4 (({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ 0 ∈ {𝐴, 𝐵, 𝐶}) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
86, 7syl 17 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = 0)
9 0zd 12261 . . . . . . . . . 10 (𝐶 ∈ ℤ → 0 ∈ ℤ)
10 lcmcom 16226 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = (𝐶 lcm 0))
119, 10mpancom 684 . . . . . . . . 9 (𝐶 ∈ ℤ → (0 lcm 𝐶) = (𝐶 lcm 0))
12 lcm0val 16227 . . . . . . . . 9 (𝐶 ∈ ℤ → (𝐶 lcm 0) = 0)
1311, 12eqtrd 2778 . . . . . . . 8 (𝐶 ∈ ℤ → (0 lcm 𝐶) = 0)
1413eqcomd 2744 . . . . . . 7 (𝐶 ∈ ℤ → 0 = (0 lcm 𝐶))
15143ad2ant3 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐶))
1615adantl 481 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐶))
17 0zd 12261 . . . . . . . . . . 11 (𝐵 ∈ ℤ → 0 ∈ ℤ)
18 lcmcom 16226 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 lcm 𝐵) = (𝐵 lcm 0))
1917, 18mpancom 684 . . . . . . . . . 10 (𝐵 ∈ ℤ → (0 lcm 𝐵) = (𝐵 lcm 0))
20 lcm0val 16227 . . . . . . . . . 10 (𝐵 ∈ ℤ → (𝐵 lcm 0) = 0)
2119, 20eqtrd 2778 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 lcm 𝐵) = 0)
2221eqcomd 2744 . . . . . . . 8 (𝐵 ∈ ℤ → 0 = (0 lcm 𝐵))
23223ad2ant2 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (0 lcm 𝐵))
2423adantl 481 . . . . . 6 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (0 lcm 𝐵))
2524oveq1d 7270 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((0 lcm 𝐵) lcm 𝐶))
26 oveq1 7262 . . . . . . 7 (0 = 𝐴 → (0 lcm 𝐵) = (𝐴 lcm 𝐵))
2726oveq1d 7270 . . . . . 6 (0 = 𝐴 → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2827adantr 480 . . . . 5 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((0 lcm 𝐵) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
2916, 25, 283eqtrd 2782 . . . 4 ((0 = 𝐴 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
30 lcm0val 16227 . . . . . . . . 9 (𝐴 ∈ ℤ → (𝐴 lcm 0) = 0)
3130eqcomd 2744 . . . . . . . 8 (𝐴 ∈ ℤ → 0 = (𝐴 lcm 0))
32313ad2ant1 1131 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = (𝐴 lcm 0))
3332adantl 481 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = (𝐴 lcm 0))
3433oveq1d 7270 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = ((𝐴 lcm 0) lcm 𝐶))
35133ad2ant3 1133 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 lcm 𝐶) = 0)
3635adantl 481 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (0 lcm 𝐶) = 0)
37 oveq2 7263 . . . . . . 7 (0 = 𝐵 → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3837adantr 480 . . . . . 6 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 0) = (𝐴 lcm 𝐵))
3938oveq1d 7270 . . . . 5 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 0) lcm 𝐶) = ((𝐴 lcm 𝐵) lcm 𝐶))
4034, 36, 393eqtr3d 2786 . . . 4 ((0 = 𝐵 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
41 lcmcl 16234 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℕ0)
4241nn0zd 12353 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
43 lcm0val 16227 . . . . . . . 8 ((𝐴 lcm 𝐵) ∈ ℤ → ((𝐴 lcm 𝐵) lcm 0) = 0)
4443eqcomd 2744 . . . . . . 7 ((𝐴 lcm 𝐵) ∈ ℤ → 0 = ((𝐴 lcm 𝐵) lcm 0))
4542, 44syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
46453adant3 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 = ((𝐴 lcm 𝐵) lcm 0))
47 oveq2 7263 . . . . 5 (0 = 𝐶 → ((𝐴 lcm 𝐵) lcm 0) = ((𝐴 lcm 𝐵) lcm 𝐶))
4846, 47sylan9eqr 2801 . . . 4 ((0 = 𝐶 ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
4929, 40, 483jaoian 1427 . . 3 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 = ((𝐴 lcm 𝐵) lcm 𝐶))
508, 49eqtrd 2778 . 2 (((0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
51423adant3 1130 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 lcm 𝐵) ∈ ℤ)
52 simp3 1136 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
5351, 52jca 511 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
5453adantl 481 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
55 dvdslcm 16231 . . . . . . . 8 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
5654, 55syl 17 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
57 dvdslcm 16231 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
58573adant3 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)))
59 simp1 1134 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
60 lcmcl 16234 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6153, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ0)
6261nn0zd 12353 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ)
6359, 51, 623jca 1126 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
64 dvdstr 15931 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6563, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
6665expd 415 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6766com12 32 . . . . . . . . . . . . . 14 (𝐴 ∥ (𝐴 lcm 𝐵) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6867adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
6958, 68mpcom 38 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7069adantl 481 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7170com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7271adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
7372impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
74 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∥ (𝐴 lcm 𝐵) ∧ 𝐵 ∥ (𝐴 lcm 𝐵)) → 𝐵 ∥ (𝐴 lcm 𝐵))
7557, 74syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
76753adant3 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∥ (𝐴 lcm 𝐵))
7776adantl 481 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ (𝐴 lcm 𝐵))
78 simp2 1135 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
7978, 51, 623jca 1126 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
8079adantl 481 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ))
81 dvdstr 15931 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℤ) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8280, 81syl 17 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐵 ∥ (𝐴 lcm 𝐵) ∧ (𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8377, 82mpand 691 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8483com12 32 . . . . . . . . . 10 ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8584adantr 480 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
8685impcom 407 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
87 simpr 484 . . . . . . . . 9 (((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8887adantl 481 . . . . . . . 8 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
8973, 86, 883jca 1126 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ ((𝐴 lcm 𝐵) ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9056, 89mpdan 683 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
91 breq1 5073 . . . . . . . 8 (𝑚 = 𝐴 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
92 breq1 5073 . . . . . . . 8 (𝑚 = 𝐵 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
93 breq1 5073 . . . . . . . 8 (𝑚 = 𝐶 → (𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶)))
9491, 92, 93raltpg 4631 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9594adantl 481 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ↔ (𝐴 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐵 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ 𝐶 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))))
9690, 95mpbird 256 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶))
97 breq1 5073 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝑘𝐴𝑘))
98 breq1 5073 . . . . . . . . 9 (𝑚 = 𝐵 → (𝑚𝑘𝐵𝑘))
99 breq1 5073 . . . . . . . . 9 (𝑚 = 𝐶 → (𝑚𝑘𝐶𝑘))
10097, 98, 99raltpg 4631 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
101100ad2antlr 723 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 ↔ (𝐴𝑘𝐵𝑘𝐶𝑘)))
102 simpr 484 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
10351ad2antlr 723 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∈ ℤ)
10452ad2antlr 723 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → 𝐶 ∈ ℤ)
105102, 103, 1043jca 1126 . . . . . . . . . 10 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
106105adantr 480 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ))
107 3ioran 1104 . . . . . . . . . . . . . . . . 17 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ↔ (¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶))
108 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐴𝐴 = 0)
109108notbii 319 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐴 ↔ ¬ 𝐴 = 0)
110 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . 22 (0 = 𝐵𝐵 = 0)
111110notbii 319 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 = 𝐵 ↔ ¬ 𝐵 = 0)
112109, 111anbi12i 626 . . . . . . . . . . . . . . . . . . . 20 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
113112biimpi 215 . . . . . . . . . . . . . . . . . . 19 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
114 ioran 980 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴 = 0 ∨ 𝐵 = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
115113, 114sylibr 233 . . . . . . . . . . . . . . . . . 18 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1161153adant3 1130 . . . . . . . . . . . . . . . . 17 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
117107, 116sylbi 216 . . . . . . . . . . . . . . . 16 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
118 id 22 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
1191183adant3 1130 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
120117, 119anim12ci 613 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
121 lcmn0cl 16230 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) → (𝐴 lcm 𝐵) ∈ ℕ)
122120, 121syl 17 . . . . . . . . . . . . . 14 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
123 nnne0 11937 . . . . . . . . . . . . . . 15 ((𝐴 lcm 𝐵) ∈ ℕ → (𝐴 lcm 𝐵) ≠ 0)
124123neneqd 2947 . . . . . . . . . . . . . 14 ((𝐴 lcm 𝐵) ∈ ℕ → ¬ (𝐴 lcm 𝐵) = 0)
125122, 124syl 17 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
126 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (0 = 𝐶𝐶 = 0)
127126notbii 319 . . . . . . . . . . . . . . . . 17 (¬ 0 = 𝐶 ↔ ¬ 𝐶 = 0)
128127biimpi 215 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐶 → ¬ 𝐶 = 0)
1291283ad2ant3 1133 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ 𝐶 = 0)
130107, 129sylbi 216 . . . . . . . . . . . . . 14 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 𝐶 = 0)
131130adantr 480 . . . . . . . . . . . . 13 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 𝐶 = 0)
132125, 131jca 511 . . . . . . . . . . . 12 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
133132adantr 480 . . . . . . . . . . 11 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
134133adantr 480 . . . . . . . . . 10 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
135 ioran 980 . . . . . . . . . 10 (¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0) ↔ (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
136134, 135sylibr 233 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
137119adantl 481 . . . . . . . . . . . . . . 15 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
138 nnz 12272 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
139137, 138anim12ci 613 . . . . . . . . . . . . . 14 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
140 3anass 1093 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑘 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
141139, 140sylibr 233 . . . . . . . . . . . . 13 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
142 lcmdvds 16241 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
143141, 142syl 17 . . . . . . . . . . . 12 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘) → (𝐴 lcm 𝐵) ∥ 𝑘))
144143com12 32 . . . . . . . . . . 11 ((𝐴𝑘𝐵𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
1451443adant3 1130 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (𝐴 lcm 𝐵) ∥ 𝑘))
146145impcom 407 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → (𝐴 lcm 𝐵) ∥ 𝑘)
147 simp3 1136 . . . . . . . . . 10 ((𝐴𝑘𝐵𝑘𝐶𝑘) → 𝐶𝑘)
148147adantl 481 . . . . . . . . 9 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → 𝐶𝑘)
149 lcmledvds 16232 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → (((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
150149imp 406 . . . . . . . . 9 ((((𝑘 ∈ ℕ ∧ (𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) ∧ ((𝐴 lcm 𝐵) ∥ 𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
151106, 136, 146, 148, 150syl22anc 835 . . . . . . . 8 ((((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) ∧ (𝐴𝑘𝐵𝑘𝐶𝑘)) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)
152151ex 412 . . . . . . 7 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘𝐵𝑘𝐶𝑘) → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
153101, 152sylbid 239 . . . . . 6 (((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) ∧ 𝑘 ∈ ℕ) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
154153ralrimiva 3107 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))
15596, 154jca 511 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘)))
156109biimpi 215 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐴 → ¬ 𝐴 = 0)
157111biimpi 215 . . . . . . . . . . . . . . . 16 (¬ 0 = 𝐵 → ¬ 𝐵 = 0)
158156, 157anim12i 612 . . . . . . . . . . . . . . 15 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → (¬ 𝐴 = 0 ∧ ¬ 𝐵 = 0))
159158, 114sylibr 233 . . . . . . . . . . . . . 14 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
1601593adant3 1130 . . . . . . . . . . . . 13 ((¬ 0 = 𝐴 ∧ ¬ 0 = 𝐵 ∧ ¬ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
161107, 160sylbi 216 . . . . . . . . . . . 12 (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ (𝐴 = 0 ∨ 𝐵 = 0))
162161, 119anim12ci 613 . . . . . . . . . . 11 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∨ 𝐵 = 0)))
163162, 121syl 17 . . . . . . . . . 10 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (𝐴 lcm 𝐵) ∈ ℕ)
164163, 124syl 17 . . . . . . . . 9 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ (𝐴 lcm 𝐵) = 0)
165164, 131jca 511 . . . . . . . 8 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (¬ (𝐴 lcm 𝐵) = 0 ∧ ¬ 𝐶 = 0))
166165, 135sylibr 233 . . . . . . 7 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0))
16754, 166jca 511 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)))
168 lcmn0cl 16230 . . . . . 6 ((((𝐴 lcm 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ ¬ ((𝐴 lcm 𝐵) = 0 ∨ 𝐶 = 0)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
169167, 168syl 17 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ)
1705adantl 481 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ⊆ ℤ)
171 tpfi 9020 . . . . . 6 {𝐴, 𝐵, 𝐶} ∈ Fin
172171a1i 11 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → {𝐴, 𝐵, 𝐶} ∈ Fin)
1733a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} ↔ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
174173biimpd 228 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ {𝐴, 𝐵, 𝐶} → (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶)))
175174con3d 152 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶}))
176175impcom 407 . . . . . 6 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
177 df-nel 3049 . . . . . 6 (0 ∉ {𝐴, 𝐵, 𝐶} ↔ ¬ 0 ∈ {𝐴, 𝐵, 𝐶})
178176, 177sylibr 233 . . . . 5 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → 0 ∉ {𝐴, 𝐵, 𝐶})
179 lcmf 16266 . . . . 5 ((((𝐴 lcm 𝐵) lcm 𝐶) ∈ ℕ ∧ ({𝐴, 𝐵, 𝐶} ⊆ ℤ ∧ {𝐴, 𝐵, 𝐶} ∈ Fin ∧ 0 ∉ {𝐴, 𝐵, 𝐶})) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
180169, 170, 172, 178, 179syl13anc 1370 . . . 4 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}) ↔ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚 ∥ ((𝐴 lcm 𝐵) lcm 𝐶) ∧ ∀𝑘 ∈ ℕ (∀𝑚 ∈ {𝐴, 𝐵, 𝐶}𝑚𝑘 → ((𝐴 lcm 𝐵) lcm 𝐶) ≤ 𝑘))))
181155, 180mpbird 256 . . 3 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → ((𝐴 lcm 𝐵) lcm 𝐶) = (lcm‘{𝐴, 𝐵, 𝐶}))
182181eqcomd 2744 . 2 ((¬ (0 = 𝐴 ∨ 0 = 𝐵 ∨ 0 = 𝐶) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
18350, 182pm2.61ian 808 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (lcm‘{𝐴, 𝐵, 𝐶}) = ((𝐴 lcm 𝐵) lcm 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wnel 3048  wral 3063  wss 3883  {ctp 4562   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  cle 10941  cn 11903  0cn0 12163  cz 12249  cdvds 15891   lcm clcm 16221  lcmclcmf 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-dvds 15892  df-gcd 16130  df-lcm 16223  df-lcmf 16224
This theorem is referenced by:  lcmf2a3a4e12  16280
  Copyright terms: Public domain W3C validator