MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnsym Structured version   Visualization version   GIF version

Theorem xrltnsym 13057
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 13036 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13036 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltnsym 11232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4 rexr 11180 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 pnfnlt 13048 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
64, 5syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ +∞ < 𝐴)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐴)
8 breq1 5098 . . . . . . 7 (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
98adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
107, 9mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
1110a1d 25 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
12 nltmnf 13049 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
134, 12syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
1413adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
15 breq2 5099 . . . . . . 7 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
1615adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
1714, 16mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
1817pm2.21d 121 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
193, 11, 183jaodan 1433 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
20 pnfnlt 13048 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2120adantl 481 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
22 breq1 5098 . . . . . . 7 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2322adantr 480 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2421, 23mtbird 325 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
2524pm2.21d 121 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
262, 25sylan2br 595 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
27 rexr 11180 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
28 nltmnf 13049 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
2927, 28syl 17 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 < -∞)
3029adantl 481 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < -∞)
31 breq2 5099 . . . . . . 7 (𝐴 = -∞ → (𝐵 < 𝐴𝐵 < -∞))
3231adantr 480 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < -∞))
3330, 32mtbird 325 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < 𝐴)
3433a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
35 mnfxr 11191 . . . . . . . 8 -∞ ∈ ℝ*
36 pnfnlt 13048 . . . . . . . 8 (-∞ ∈ ℝ* → ¬ +∞ < -∞)
3735, 36ax-mp 5 . . . . . . 7 ¬ +∞ < -∞
38 breq12 5100 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ < -∞))
3937, 38mtbiri 327 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
4039ancoms 458 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
4140a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
42 xrltnr 13039 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4335, 42ax-mp 5 . . . . . 6 ¬ -∞ < -∞
44 breq12 5100 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
4543, 44mtbiri 327 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
4645pm2.21d 121 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4734, 41, 463jaodan 1433 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4819, 26, 473jaoian 1432 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
491, 2, 48syl2anb 598 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109   class class class wbr 5095  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173
This theorem is referenced by:  xrltnsym2  13058  xrlttri  13059  xmullem2  13185  sgnp  15015  iccpartnel  47426
  Copyright terms: Public domain W3C validator