Proof of Theorem xrltnsym
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elxr 13158 | . 2
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) | 
| 2 |  | elxr 13158 | . 2
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) | 
| 3 |  | ltnsym 11359 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 4 |  | rexr 11307 | . . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) | 
| 5 |  | pnfnlt 13170 | . . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ¬ +∞ < 𝐴) | 
| 6 | 4, 5 | syl 17 | . . . . . . 7
⊢ (𝐴 ∈ ℝ → ¬
+∞ < 𝐴) | 
| 7 | 6 | adantr 480 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬
+∞ < 𝐴) | 
| 8 |  | breq1 5146 | . . . . . . 7
⊢ (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴)) | 
| 9 | 8 | adantl 481 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴)) | 
| 10 | 7, 9 | mtbird 325 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴) | 
| 11 | 10 | a1d 25 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 12 |  | nltmnf 13171 | . . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) | 
| 13 | 4, 12 | syl 17 | . . . . . . 7
⊢ (𝐴 ∈ ℝ → ¬
𝐴 <
-∞) | 
| 14 | 13 | adantr 480 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) | 
| 15 |  | breq2 5147 | . . . . . . 7
⊢ (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) | 
| 16 | 15 | adantl 481 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) | 
| 17 | 14, 16 | mtbird 325 | . . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) | 
| 18 | 17 | pm2.21d 121 | . . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 19 | 3, 11, 18 | 3jaodan 1433 | . . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 20 |  | pnfnlt 13170 | . . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) | 
| 21 | 20 | adantl 481 | . . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) | 
| 22 |  | breq1 5146 | . . . . . . 7
⊢ (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵)) | 
| 23 | 22 | adantr 480 | . . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 ↔ +∞ < 𝐵)) | 
| 24 | 21, 23 | mtbird 325 | . . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ 𝐴 < 𝐵) | 
| 25 | 24 | pm2.21d 121 | . . . 4
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 26 | 2, 25 | sylan2br 595 | . . 3
⊢ ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 27 |  | rexr 11307 | . . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) | 
| 28 |  | nltmnf 13171 | . . . . . . . 8
⊢ (𝐵 ∈ ℝ*
→ ¬ 𝐵 <
-∞) | 
| 29 | 27, 28 | syl 17 | . . . . . . 7
⊢ (𝐵 ∈ ℝ → ¬
𝐵 <
-∞) | 
| 30 | 29 | adantl 481 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬
𝐵 <
-∞) | 
| 31 |  | breq2 5147 | . . . . . . 7
⊢ (𝐴 = -∞ → (𝐵 < 𝐴 ↔ 𝐵 < -∞)) | 
| 32 | 31 | adantr 480 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ 𝐵 < -∞)) | 
| 33 | 30, 32 | mtbird 325 | . . . . 5
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬
𝐵 < 𝐴) | 
| 34 | 33 | a1d 25 | . . . 4
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 35 |  | mnfxr 11318 | . . . . . . . 8
⊢ -∞
∈ ℝ* | 
| 36 |  | pnfnlt 13170 | . . . . . . . 8
⊢ (-∞
∈ ℝ* → ¬ +∞ <
-∞) | 
| 37 | 35, 36 | ax-mp 5 | . . . . . . 7
⊢  ¬
+∞ < -∞ | 
| 38 |  | breq12 5148 | . . . . . . 7
⊢ ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ <
-∞)) | 
| 39 | 37, 38 | mtbiri 327 | . . . . . 6
⊢ ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴) | 
| 40 | 39 | ancoms 458 | . . . . 5
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴) | 
| 41 | 40 | a1d 25 | . . . 4
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 42 |  | xrltnr 13161 | . . . . . . 7
⊢ (-∞
∈ ℝ* → ¬ -∞ <
-∞) | 
| 43 | 35, 42 | ax-mp 5 | . . . . . 6
⊢  ¬
-∞ < -∞ | 
| 44 |  | breq12 5148 | . . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ <
-∞)) | 
| 45 | 43, 44 | mtbiri 327 | . . . . 5
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) | 
| 46 | 45 | pm2.21d 121 | . . . 4
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 47 | 34, 41, 46 | 3jaodan 1433 | . . 3
⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 48 | 19, 26, 47 | 3jaoian 1432 | . 2
⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | 
| 49 | 1, 2, 48 | syl2anb 598 | 1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) |