MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnsym Structured version   Visualization version   GIF version

Theorem xrltnsym 13036
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 13015 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13015 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltnsym 11211 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4 rexr 11158 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 pnfnlt 13027 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
64, 5syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ +∞ < 𝐴)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐴)
8 breq1 5094 . . . . . . 7 (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
98adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
107, 9mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
1110a1d 25 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
12 nltmnf 13028 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
134, 12syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
1413adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
15 breq2 5095 . . . . . . 7 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
1615adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
1714, 16mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
1817pm2.21d 121 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
193, 11, 183jaodan 1433 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
20 pnfnlt 13027 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2120adantl 481 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
22 breq1 5094 . . . . . . 7 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2322adantr 480 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2421, 23mtbird 325 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
2524pm2.21d 121 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
262, 25sylan2br 595 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
27 rexr 11158 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
28 nltmnf 13028 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
2927, 28syl 17 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 < -∞)
3029adantl 481 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < -∞)
31 breq2 5095 . . . . . . 7 (𝐴 = -∞ → (𝐵 < 𝐴𝐵 < -∞))
3231adantr 480 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < -∞))
3330, 32mtbird 325 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < 𝐴)
3433a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
35 mnfxr 11169 . . . . . . . 8 -∞ ∈ ℝ*
36 pnfnlt 13027 . . . . . . . 8 (-∞ ∈ ℝ* → ¬ +∞ < -∞)
3735, 36ax-mp 5 . . . . . . 7 ¬ +∞ < -∞
38 breq12 5096 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ < -∞))
3937, 38mtbiri 327 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
4039ancoms 458 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
4140a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
42 xrltnr 13018 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4335, 42ax-mp 5 . . . . . 6 ¬ -∞ < -∞
44 breq12 5096 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
4543, 44mtbiri 327 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
4645pm2.21d 121 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4734, 41, 463jaodan 1433 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4819, 26, 473jaoian 1432 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
491, 2, 48syl2anb 598 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111   class class class wbr 5091  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151
This theorem is referenced by:  xrltnsym2  13037  xrlttri  13038  xmullem2  13164  sgnp  14997  iccpartnel  47475
  Copyright terms: Public domain W3C validator