MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnsym Structured version   Visualization version   GIF version

Theorem xrltnsym 13179
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 13158 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13158 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltnsym 11359 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4 rexr 11307 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 pnfnlt 13170 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
64, 5syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ +∞ < 𝐴)
76adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐴)
8 breq1 5146 . . . . . . 7 (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
98adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
107, 9mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
1110a1d 25 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
12 nltmnf 13171 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
134, 12syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
1413adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
15 breq2 5147 . . . . . . 7 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
1615adantl 481 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
1714, 16mtbird 325 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
1817pm2.21d 121 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
193, 11, 183jaodan 1433 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
20 pnfnlt 13170 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2120adantl 481 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
22 breq1 5146 . . . . . . 7 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2322adantr 480 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2421, 23mtbird 325 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
2524pm2.21d 121 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
262, 25sylan2br 595 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
27 rexr 11307 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
28 nltmnf 13171 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
2927, 28syl 17 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 < -∞)
3029adantl 481 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < -∞)
31 breq2 5147 . . . . . . 7 (𝐴 = -∞ → (𝐵 < 𝐴𝐵 < -∞))
3231adantr 480 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < -∞))
3330, 32mtbird 325 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < 𝐴)
3433a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
35 mnfxr 11318 . . . . . . . 8 -∞ ∈ ℝ*
36 pnfnlt 13170 . . . . . . . 8 (-∞ ∈ ℝ* → ¬ +∞ < -∞)
3735, 36ax-mp 5 . . . . . . 7 ¬ +∞ < -∞
38 breq12 5148 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ < -∞))
3937, 38mtbiri 327 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
4039ancoms 458 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
4140a1d 25 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
42 xrltnr 13161 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4335, 42ax-mp 5 . . . . . 6 ¬ -∞ < -∞
44 breq12 5148 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
4543, 44mtbiri 327 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
4645pm2.21d 121 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4734, 41, 463jaodan 1433 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4819, 26, 473jaoian 1432 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
491, 2, 48syl2anb 598 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300
This theorem is referenced by:  xrltnsym2  13180  xrlttri  13181  xmullem2  13307  sgnp  15129  iccpartnel  47425
  Copyright terms: Public domain W3C validator