Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xaddeq0 Structured version   Visualization version   GIF version

Theorem xaddeq0 31712
Description: Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
Assertion
Ref Expression
xaddeq0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))

Proof of Theorem xaddeq0
StepHypRef Expression
1 elxr 13045 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ)
32rexrd 11213 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ*)
4 xnegneg 13142 . . . . . . 7 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = 𝐴)
63xnegcld 13228 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 ∈ ℝ*)
7 xaddlid 13170 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ* → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
9 simplr 768 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
10 xaddcom 13168 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
113, 9, 10syl2anc 585 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
1211oveq1d 7376 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴))
13 simpr 486 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
1413oveq1d 7376 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = (0 +𝑒 -𝑒𝐴))
15 xpncan 13179 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1615ancoms 460 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1716adantr 482 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1812, 14, 173eqtr3d 2781 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = 𝐵)
198, 18eqtr3d 2775 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 = 𝐵)
20 xnegeq 13135 . . . . . . 7 (-𝑒𝐴 = 𝐵 → -𝑒-𝑒𝐴 = -𝑒𝐵)
2119, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = -𝑒𝐵)
225, 21eqtr3d 2775 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
2322ex 414 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
24 simpll 766 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = +∞)
25 simplr 768 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
2624oveq1d 7376 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
27 simpr 486 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
2826, 27eqtr3d 2775 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) = 0)
29 0re 11165 . . . . . . . . . . . . 13 0 ∈ ℝ
30 renepnf 11211 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
3129, 30mp1i 13 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ +∞)
3228, 31eqnetrd 3008 . . . . . . . . . . 11 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) ≠ +∞)
3332neneqd 2945 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (+∞ +𝑒 𝐵) = +∞)
34 xaddpnf2 13155 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
3534stoic1a 1775 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (+∞ +𝑒 𝐵) = +∞) → ¬ 𝐵 ≠ -∞)
3625, 33, 35syl2anc 585 . . . . . . . . 9 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ -∞)
37 nne 2944 . . . . . . . . 9 𝐵 ≠ -∞ ↔ 𝐵 = -∞)
3836, 37sylib 217 . . . . . . . 8 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = -∞)
39 xnegeq 13135 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
4038, 39syl 17 . . . . . . 7 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒-∞)
41 xnegmnf 13138 . . . . . . 7 -𝑒-∞ = +∞
4240, 41eqtr2di 2790 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → +∞ = -𝑒𝐵)
4324, 42eqtrd 2773 . . . . 5 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
4443ex 414 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
45 simpll 766 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -∞)
46 simplr 768 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
4745oveq1d 7376 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
48 simpr 486 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
4947, 48eqtr3d 2775 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) = 0)
50 renemnf 11212 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ -∞)
5129, 50mp1i 13 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ -∞)
5249, 51eqnetrd 3008 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) ≠ -∞)
5352neneqd 2945 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (-∞ +𝑒 𝐵) = -∞)
54 xaddmnf2 13157 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
5554stoic1a 1775 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (-∞ +𝑒 𝐵) = -∞) → ¬ 𝐵 ≠ +∞)
5646, 53, 55syl2anc 585 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ +∞)
57 nne 2944 . . . . . . . . 9 𝐵 ≠ +∞ ↔ 𝐵 = +∞)
5856, 57sylib 217 . . . . . . . 8 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = +∞)
59 xnegeq 13135 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
6058, 59syl 17 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒+∞)
61 xnegpnf 13137 . . . . . . 7 -𝑒+∞ = -∞
6260, 61eqtr2di 2790 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -∞ = -𝑒𝐵)
6345, 62eqtrd 2773 . . . . 5 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
6463ex 414 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
6523, 44, 643jaoian 1430 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
661, 65sylanb 582 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
67 simpr 486 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐴 = -𝑒𝐵)
6867oveq1d 7376 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = (-𝑒𝐵 +𝑒 𝐵))
69 xnegcl 13141 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
7069ad2antlr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → -𝑒𝐵 ∈ ℝ*)
71 simplr 768 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐵 ∈ ℝ*)
72 xaddcom 13168 . . . . 5 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
7370, 71, 72syl2anc 585 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
74 xnegid 13166 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
7574ad2antlr 726 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐵 +𝑒 -𝑒𝐵) = 0)
7668, 73, 753eqtrd 2777 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = 0)
7776ex 414 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -𝑒𝐵 → (𝐴 +𝑒 𝐵) = 0))
7866, 77impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2940  (class class class)co 7361  cr 11058  0cc0 11059  +∞cpnf 11194  -∞cmnf 11195  *cxr 11196  -𝑒cxne 13038   +𝑒 cxad 13039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-sub 11395  df-neg 11396  df-xneg 13041  df-xadd 13042
This theorem is referenced by:  xrsinvgval  31924
  Copyright terms: Public domain W3C validator