Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xaddeq0 Structured version   Visualization version   GIF version

Theorem xaddeq0 30978
Description: Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
Assertion
Ref Expression
xaddeq0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))

Proof of Theorem xaddeq0
StepHypRef Expression
1 elxr 12781 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ)
32rexrd 10956 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ*)
4 xnegneg 12877 . . . . . . 7 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = 𝐴)
63xnegcld 12963 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 ∈ ℝ*)
7 xaddid2 12905 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ* → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
9 simplr 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
10 xaddcom 12903 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
113, 9, 10syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
1211oveq1d 7270 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴))
13 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
1413oveq1d 7270 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = (0 +𝑒 -𝑒𝐴))
15 xpncan 12914 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1615ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1716adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1812, 14, 173eqtr3d 2786 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = 𝐵)
198, 18eqtr3d 2780 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 = 𝐵)
20 xnegeq 12870 . . . . . . 7 (-𝑒𝐴 = 𝐵 → -𝑒-𝑒𝐴 = -𝑒𝐵)
2119, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = -𝑒𝐵)
225, 21eqtr3d 2780 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
2322ex 412 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
24 simpll 763 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = +∞)
25 simplr 765 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
2624oveq1d 7270 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
27 simpr 484 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
2826, 27eqtr3d 2780 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) = 0)
29 0re 10908 . . . . . . . . . . . . 13 0 ∈ ℝ
30 renepnf 10954 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
3129, 30mp1i 13 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ +∞)
3228, 31eqnetrd 3010 . . . . . . . . . . 11 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) ≠ +∞)
3332neneqd 2947 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (+∞ +𝑒 𝐵) = +∞)
34 xaddpnf2 12890 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
3534stoic1a 1776 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (+∞ +𝑒 𝐵) = +∞) → ¬ 𝐵 ≠ -∞)
3625, 33, 35syl2anc 583 . . . . . . . . 9 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ -∞)
37 nne 2946 . . . . . . . . 9 𝐵 ≠ -∞ ↔ 𝐵 = -∞)
3836, 37sylib 217 . . . . . . . 8 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = -∞)
39 xnegeq 12870 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
4038, 39syl 17 . . . . . . 7 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒-∞)
41 xnegmnf 12873 . . . . . . 7 -𝑒-∞ = +∞
4240, 41eqtr2di 2796 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → +∞ = -𝑒𝐵)
4324, 42eqtrd 2778 . . . . 5 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
4443ex 412 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
45 simpll 763 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -∞)
46 simplr 765 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
4745oveq1d 7270 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
48 simpr 484 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
4947, 48eqtr3d 2780 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) = 0)
50 renemnf 10955 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ -∞)
5129, 50mp1i 13 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ -∞)
5249, 51eqnetrd 3010 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) ≠ -∞)
5352neneqd 2947 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (-∞ +𝑒 𝐵) = -∞)
54 xaddmnf2 12892 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
5554stoic1a 1776 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (-∞ +𝑒 𝐵) = -∞) → ¬ 𝐵 ≠ +∞)
5646, 53, 55syl2anc 583 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ +∞)
57 nne 2946 . . . . . . . . 9 𝐵 ≠ +∞ ↔ 𝐵 = +∞)
5856, 57sylib 217 . . . . . . . 8 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = +∞)
59 xnegeq 12870 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
6058, 59syl 17 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒+∞)
61 xnegpnf 12872 . . . . . . 7 -𝑒+∞ = -∞
6260, 61eqtr2di 2796 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -∞ = -𝑒𝐵)
6345, 62eqtrd 2778 . . . . 5 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
6463ex 412 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
6523, 44, 643jaoian 1427 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
661, 65sylanb 580 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
67 simpr 484 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐴 = -𝑒𝐵)
6867oveq1d 7270 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = (-𝑒𝐵 +𝑒 𝐵))
69 xnegcl 12876 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
7069ad2antlr 723 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → -𝑒𝐵 ∈ ℝ*)
71 simplr 765 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐵 ∈ ℝ*)
72 xaddcom 12903 . . . . 5 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
7370, 71, 72syl2anc 583 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
74 xnegid 12901 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
7574ad2antlr 723 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐵 +𝑒 -𝑒𝐵) = 0)
7668, 73, 753eqtrd 2782 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = 0)
7776ex 412 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -𝑒𝐵 → (𝐴 +𝑒 𝐵) = 0))
7866, 77impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939  -𝑒cxne 12774   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-sub 11137  df-neg 11138  df-xneg 12777  df-xadd 12778
This theorem is referenced by:  xrsinvgval  31188
  Copyright terms: Public domain W3C validator