Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xaddeq0 Structured version   Visualization version   GIF version

Theorem xaddeq0 31658
Description: Two extended reals which add up to zero are each other's negatives. (Contributed by Thierry Arnoux, 13-Jun-2017.)
Assertion
Ref Expression
xaddeq0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))

Proof of Theorem xaddeq0
StepHypRef Expression
1 elxr 13037 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 simpll 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ)
32rexrd 11205 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 ∈ ℝ*)
4 xnegneg 13133 . . . . . . 7 (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴)
53, 4syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = 𝐴)
63xnegcld 13219 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 ∈ ℝ*)
7 xaddid2 13161 . . . . . . . . 9 (-𝑒𝐴 ∈ ℝ* → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = -𝑒𝐴)
9 simplr 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
10 xaddcom 13159 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
113, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
1211oveq1d 7372 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴))
13 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
1413oveq1d 7372 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐴) = (0 +𝑒 -𝑒𝐴))
15 xpncan 13170 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1615ancoms 459 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1716adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ((𝐵 +𝑒 𝐴) +𝑒 -𝑒𝐴) = 𝐵)
1812, 14, 173eqtr3d 2784 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (0 +𝑒 -𝑒𝐴) = 𝐵)
198, 18eqtr3d 2778 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐴 = 𝐵)
20 xnegeq 13126 . . . . . . 7 (-𝑒𝐴 = 𝐵 → -𝑒-𝑒𝐴 = -𝑒𝐵)
2119, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒-𝑒𝐴 = -𝑒𝐵)
225, 21eqtr3d 2778 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
2322ex 413 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
24 simpll 765 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = +∞)
25 simplr 767 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
2624oveq1d 7372 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
27 simpr 485 . . . . . . . . . . . . 13 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
2826, 27eqtr3d 2778 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) = 0)
29 0re 11157 . . . . . . . . . . . . 13 0 ∈ ℝ
30 renepnf 11203 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
3129, 30mp1i 13 . . . . . . . . . . . 12 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ +∞)
3228, 31eqnetrd 3011 . . . . . . . . . . 11 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (+∞ +𝑒 𝐵) ≠ +∞)
3332neneqd 2948 . . . . . . . . . 10 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (+∞ +𝑒 𝐵) = +∞)
34 xaddpnf2 13146 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
3534stoic1a 1774 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (+∞ +𝑒 𝐵) = +∞) → ¬ 𝐵 ≠ -∞)
3625, 33, 35syl2anc 584 . . . . . . . . 9 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ -∞)
37 nne 2947 . . . . . . . . 9 𝐵 ≠ -∞ ↔ 𝐵 = -∞)
3836, 37sylib 217 . . . . . . . 8 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = -∞)
39 xnegeq 13126 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
4038, 39syl 17 . . . . . . 7 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒-∞)
41 xnegmnf 13129 . . . . . . 7 -𝑒-∞ = +∞
4240, 41eqtr2di 2793 . . . . . 6 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → +∞ = -𝑒𝐵)
4324, 42eqtrd 2776 . . . . 5 (((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
4443ex 413 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
45 simpll 765 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -∞)
46 simplr 767 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 ∈ ℝ*)
4745oveq1d 7372 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
48 simpr 485 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (𝐴 +𝑒 𝐵) = 0)
4947, 48eqtr3d 2778 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) = 0)
50 renemnf 11204 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ -∞)
5129, 50mp1i 13 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 0 ≠ -∞)
5249, 51eqnetrd 3011 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → (-∞ +𝑒 𝐵) ≠ -∞)
5352neneqd 2948 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ (-∞ +𝑒 𝐵) = -∞)
54 xaddmnf2 13148 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
5554stoic1a 1774 . . . . . . . . . 10 ((𝐵 ∈ ℝ* ∧ ¬ (-∞ +𝑒 𝐵) = -∞) → ¬ 𝐵 ≠ +∞)
5646, 53, 55syl2anc 584 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → ¬ 𝐵 ≠ +∞)
57 nne 2947 . . . . . . . . 9 𝐵 ≠ +∞ ↔ 𝐵 = +∞)
5856, 57sylib 217 . . . . . . . 8 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐵 = +∞)
59 xnegeq 13126 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
6058, 59syl 17 . . . . . . 7 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -𝑒𝐵 = -𝑒+∞)
61 xnegpnf 13128 . . . . . . 7 -𝑒+∞ = -∞
6260, 61eqtr2di 2793 . . . . . 6 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → -∞ = -𝑒𝐵)
6345, 62eqtrd 2776 . . . . 5 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐵) = 0) → 𝐴 = -𝑒𝐵)
6463ex 413 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
6523, 44, 643jaoian 1429 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
661, 65sylanb 581 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 → 𝐴 = -𝑒𝐵))
67 simpr 485 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐴 = -𝑒𝐵)
6867oveq1d 7372 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = (-𝑒𝐵 +𝑒 𝐵))
69 xnegcl 13132 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
7069ad2antlr 725 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → -𝑒𝐵 ∈ ℝ*)
71 simplr 767 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → 𝐵 ∈ ℝ*)
72 xaddcom 13159 . . . . 5 ((-𝑒𝐵 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
7370, 71, 72syl2anc 584 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (-𝑒𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐵))
74 xnegid 13157 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 +𝑒 -𝑒𝐵) = 0)
7574ad2antlr 725 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐵 +𝑒 -𝑒𝐵) = 0)
7668, 73, 753eqtrd 2780 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴 = -𝑒𝐵) → (𝐴 +𝑒 𝐵) = 0)
7776ex 413 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = -𝑒𝐵 → (𝐴 +𝑒 𝐵) = 0))
7866, 77impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) = 0 ↔ 𝐴 = -𝑒𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wcel 2106  wne 2943  (class class class)co 7357  cr 11050  0cc0 11051  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188  -𝑒cxne 13030   +𝑒 cxad 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-sub 11387  df-neg 11388  df-xneg 13033  df-xadd 13034
This theorem is referenced by:  xrsinvgval  31868
  Copyright terms: Public domain W3C validator