Proof of Theorem qbtwnxr
Step | Hyp | Ref
| Expression |
1 | | elxr 12781 |
. . 3
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
2 | | elxr 12781 |
. . . . 5
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
3 | | qbtwnre 12862 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
4 | 3 | 3expia 1119 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
5 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈
ℝ) |
6 | | peano2re 11078 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
7 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈
ℝ) |
8 | | ltp1 11745 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1)) |
10 | | qbtwnre 12862 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1))) |
11 | 5, 7, 9, 10 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1))) |
12 | | qre 12622 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) |
13 | 12 | ltpnfd 12786 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝑥 < +∞) |
14 | 13 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞) |
15 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞) |
16 | 14, 15 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵) |
17 | 16 | a1d 25 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵)) |
18 | 17 | anim2d 611 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
19 | 18 | reximdva 3202 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
(∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
20 | 11, 19 | mpd 15 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
21 | 20 | a1d 25 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
22 | | rexr 10952 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
23 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
24 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
25 | | nltmnf 12794 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) |
26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
¬ 𝐴 <
-∞) |
27 | 26 | pm2.21d 121 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < -∞ →
∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
28 | 24, 27 | sylbid 239 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
29 | 22, 28 | sylan 579 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
30 | 4, 21, 29 | 3jaodan 1428 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
31 | 2, 30 | sylan2b 593 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
32 | | breq1 5073 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵)) |
33 | 32 | adantr 480 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 ↔ +∞ < 𝐵)) |
34 | | pnfnlt 12793 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
35 | 34 | adantl 481 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) |
36 | 35 | pm2.21d 121 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (+∞ < 𝐵
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
37 | 33, 36 | sylbid 239 |
. . . 4
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
38 | | peano2rem 11218 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈
ℝ) |
39 | 38 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈
ℝ) |
40 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
41 | | ltm1 11747 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵) |
42 | 41 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵) |
43 | | qbtwnre 12862 |
. . . . . . . . 9
⊢ (((𝐵 − 1) ∈ ℝ ∧
𝐵 ∈ ℝ ∧
(𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵)) |
44 | 39, 40, 42, 43 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
∃𝑥 ∈ ℚ
((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵)) |
45 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞) |
46 | 12 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈
ℝ) |
47 | 46 | mnfltd 12789 |
. . . . . . . . . . . 12
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞
< 𝑥) |
48 | 45, 47 | eqbrtrd 5092 |
. . . . . . . . . . 11
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥) |
49 | 48 | a1d 25 |
. . . . . . . . . 10
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥 → 𝐴 < 𝑥)) |
50 | 49 | anim1d 610 |
. . . . . . . . 9
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
51 | 50 | reximdva 3202 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
(∃𝑥 ∈ ℚ
((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
52 | 44, 51 | mpd 15 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
53 | 52 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
54 | | 1re 10906 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
55 | | mnflt 12788 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ → -∞ < 1) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . 9
⊢ -∞
< 1 |
57 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ <
1)) |
58 | 56, 57 | mpbiri 257 |
. . . . . . . 8
⊢ (𝐴 = -∞ → 𝐴 < 1) |
59 | | ltpnf 12785 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ → 1 < +∞) |
60 | 54, 59 | ax-mp 5 |
. . . . . . . . 9
⊢ 1 <
+∞ |
61 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝐵 = +∞ → (1 < 𝐵 ↔ 1 <
+∞)) |
62 | 60, 61 | mpbiri 257 |
. . . . . . . 8
⊢ (𝐵 = +∞ → 1 < 𝐵) |
63 | | 1z 12280 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
64 | | zq 12623 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
65 | 63, 64 | ax-mp 5 |
. . . . . . . . 9
⊢ 1 ∈
ℚ |
66 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐴 < 𝑥 ↔ 𝐴 < 1)) |
67 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵)) |
68 | 66, 67 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵))) |
69 | 68 | rspcev 3552 |
. . . . . . . . 9
⊢ ((1
∈ ℚ ∧ (𝐴
< 1 ∧ 1 < 𝐵))
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
70 | 65, 69 | mpan 686 |
. . . . . . . 8
⊢ ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
71 | 58, 62, 70 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
72 | 71 | a1d 25 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
73 | | 3mix3 1330 |
. . . . . . . 8
⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) |
74 | 73, 1 | sylibr 233 |
. . . . . . 7
⊢ (𝐴 = -∞ → 𝐴 ∈
ℝ*) |
75 | 74, 28 | sylan 579 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
76 | 53, 72, 75 | 3jaodan 1428 |
. . . . 5
⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
77 | 2, 76 | sylan2b 593 |
. . . 4
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
78 | 31, 37, 77 | 3jaoian 1427 |
. . 3
⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
79 | 1, 78 | sylanb 580 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
80 | 79 | 3impia 1115 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |