MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnxr Structured version   Visualization version   GIF version

Theorem qbtwnxr 12790
Description: The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 12708 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12708 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 qbtwnre 12789 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
433expia 1123 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5 simpl 486 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
6 peano2re 11005 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
76adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈ ℝ)
8 ltp1 11672 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
98adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1))
10 qbtwnre 12789 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
115, 7, 9, 10syl3anc 1373 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
12 qre 12549 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1312ltpnfd 12713 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 < +∞)
1413adantl 485 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞)
15 simplr 769 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞)
1614, 15breqtrrd 5081 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵)
1716a1d 25 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵))
1817anim2d 615 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥𝑥 < 𝐵)))
1918reximdva 3193 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2011, 19mpd 15 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
2120a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
22 rexr 10879 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
23 breq2 5057 . . . . . . . . 9 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2423adantl 485 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
25 nltmnf 12721 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2625adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 = -∞) → ¬ 𝐴 < -∞)
2726pm2.21d 121 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < -∞ → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2824, 27sylbid 243 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2922, 28sylan 583 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
304, 21, 293jaodan 1432 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
312, 30sylan2b 597 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
32 breq1 5056 . . . . . 6 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
3332adantr 484 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
34 pnfnlt 12720 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3534adantl 485 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3635pm2.21d 121 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3733, 36sylbid 243 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
38 peano2rem 11145 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3938adantl 485 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
40 simpr 488 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
41 ltm1 11674 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵)
4241adantl 485 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵)
43 qbtwnre 12789 . . . . . . . . 9 (((𝐵 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
4439, 40, 42, 43syl3anc 1373 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
45 simpll 767 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞)
4612adantl 485 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈ ℝ)
4746mnfltd 12716 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞ < 𝑥)
4845, 47eqbrtrd 5075 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥)
4948a1d 25 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥𝐴 < 𝑥))
5049anim1d 614 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵)))
5150reximdva 3193 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5244, 51mpd 15 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
5352a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
54 1re 10833 . . . . . . . . . 10 1 ∈ ℝ
55 mnflt 12715 . . . . . . . . . 10 (1 ∈ ℝ → -∞ < 1)
5654, 55ax-mp 5 . . . . . . . . 9 -∞ < 1
57 breq1 5056 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ < 1))
5856, 57mpbiri 261 . . . . . . . 8 (𝐴 = -∞ → 𝐴 < 1)
59 ltpnf 12712 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
6054, 59ax-mp 5 . . . . . . . . 9 1 < +∞
61 breq2 5057 . . . . . . . . 9 (𝐵 = +∞ → (1 < 𝐵 ↔ 1 < +∞))
6260, 61mpbiri 261 . . . . . . . 8 (𝐵 = +∞ → 1 < 𝐵)
63 1z 12207 . . . . . . . . . 10 1 ∈ ℤ
64 zq 12550 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
6563, 64ax-mp 5 . . . . . . . . 9 1 ∈ ℚ
66 breq2 5057 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 < 𝑥𝐴 < 1))
67 breq1 5056 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵))
6866, 67anbi12d 634 . . . . . . . . . 10 (𝑥 = 1 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵)))
6968rspcev 3537 . . . . . . . . 9 ((1 ∈ ℚ ∧ (𝐴 < 1 ∧ 1 < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7065, 69mpan 690 . . . . . . . 8 ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7158, 62, 70syl2an 599 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7271a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
73 3mix3 1334 . . . . . . . 8 (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473, 1sylibr 237 . . . . . . 7 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
7574, 28sylan 583 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7653, 72, 753jaodan 1432 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
772, 76sylan2b 597 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7831, 37, 773jaoian 1431 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
791, 78sylanb 584 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
80793impia 1119 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1088  w3a 1089   = wceq 1543  wcel 2110  wrex 3062   class class class wbr 5053  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cmin 11062  cz 12176  cq 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545
This theorem is referenced by:  qextltlem  12792  xralrple  12795  ixxub  12956  ixxlb  12957  ioo0  12960  ico0  12981  ioc0  12982  blssps  23322  blss  23323  blcld  23403  qdensere  23667  tgqioo  23697  dvlip2  24892  lhop2  24912  itgsubst  24946  itg2gt0cn  35569  qinioo  42748  qelioo  42759  qndenserrnbllem  43510
  Copyright terms: Public domain W3C validator