MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnxr Structured version   Visualization version   GIF version

Theorem qbtwnxr 13182
Description: The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 13099 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13099 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 qbtwnre 13181 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
433expia 1118 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
6 peano2re 11388 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
76adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈ ℝ)
8 ltp1 12055 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
98adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1))
10 qbtwnre 13181 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
115, 7, 9, 10syl3anc 1368 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
12 qre 12938 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
1312ltpnfd 13104 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 < +∞)
1413adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞)
15 simplr 766 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞)
1614, 15breqtrrd 5169 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵)
1716a1d 25 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵))
1817anim2d 611 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥𝑥 < 𝐵)))
1918reximdva 3162 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2011, 19mpd 15 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
2120a1d 25 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
22 rexr 11261 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
23 breq2 5145 . . . . . . . . 9 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2423adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
25 nltmnf 13112 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2625adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 = -∞) → ¬ 𝐴 < -∞)
2726pm2.21d 121 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < -∞ → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2824, 27sylbid 239 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2922, 28sylan 579 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
304, 21, 293jaodan 1427 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
312, 30sylan2b 593 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
32 breq1 5144 . . . . . 6 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
3332adantr 480 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
34 pnfnlt 13111 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3534adantl 481 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3635pm2.21d 121 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3733, 36sylbid 239 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
38 peano2rem 11528 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3938adantl 481 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
40 simpr 484 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
41 ltm1 12057 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵)
4241adantl 481 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵)
43 qbtwnre 13181 . . . . . . . . 9 (((𝐵 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
4439, 40, 42, 43syl3anc 1368 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
45 simpll 764 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞)
4612adantl 481 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈ ℝ)
4746mnfltd 13107 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞ < 𝑥)
4845, 47eqbrtrd 5163 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥)
4948a1d 25 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥𝐴 < 𝑥))
5049anim1d 610 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵)))
5150reximdva 3162 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5244, 51mpd 15 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
5352a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
54 1re 11215 . . . . . . . . . 10 1 ∈ ℝ
55 mnflt 13106 . . . . . . . . . 10 (1 ∈ ℝ → -∞ < 1)
5654, 55ax-mp 5 . . . . . . . . 9 -∞ < 1
57 breq1 5144 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ < 1))
5856, 57mpbiri 258 . . . . . . . 8 (𝐴 = -∞ → 𝐴 < 1)
59 ltpnf 13103 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
6054, 59ax-mp 5 . . . . . . . . 9 1 < +∞
61 breq2 5145 . . . . . . . . 9 (𝐵 = +∞ → (1 < 𝐵 ↔ 1 < +∞))
6260, 61mpbiri 258 . . . . . . . 8 (𝐵 = +∞ → 1 < 𝐵)
63 1z 12593 . . . . . . . . . 10 1 ∈ ℤ
64 zq 12939 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
6563, 64ax-mp 5 . . . . . . . . 9 1 ∈ ℚ
66 breq2 5145 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 < 𝑥𝐴 < 1))
67 breq1 5144 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵))
6866, 67anbi12d 630 . . . . . . . . . 10 (𝑥 = 1 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵)))
6968rspcev 3606 . . . . . . . . 9 ((1 ∈ ℚ ∧ (𝐴 < 1 ∧ 1 < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7065, 69mpan 687 . . . . . . . 8 ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7158, 62, 70syl2an 595 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7271a1d 25 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
73 3mix3 1329 . . . . . . . 8 (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473, 1sylibr 233 . . . . . . 7 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
7574, 28sylan 579 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7653, 72, 753jaodan 1427 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
772, 76sylan2b 593 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7831, 37, 773jaoian 1426 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
791, 78sylanb 580 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
80793impia 1114 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wrex 3064   class class class wbr 5141  (class class class)co 7404  cr 11108  1c1 11110   + caddc 11112  +∞cpnf 11246  -∞cmnf 11247  *cxr 11248   < clt 11249  cmin 11445  cz 12559  cq 12933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934
This theorem is referenced by:  qextltlem  13184  xralrple  13187  ixxub  13348  ixxlb  13349  ioo0  13352  ico0  13373  ioc0  13374  blssps  24280  blss  24281  blcld  24364  qdensere  24636  tgqioo  24666  dvlip2  25878  lhop2  25898  itgsubst  25934  itg2gt0cn  37055  qinioo  44802  qelioo  44813  qndenserrnbllem  45564
  Copyright terms: Public domain W3C validator