MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcom Structured version   Visualization version   GIF version

Theorem xaddcom 13302
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 13179 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13179 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 11274 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 11274 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 11476 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 595 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7 rexadd 13294 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
8 rexadd 13294 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
98ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
106, 7, 93eqtr4d 2790 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
11 oveq2 7456 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
12 rexr 11336 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
13 renemnf 11339 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
14 xaddpnf1 13288 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
1512, 13, 14syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
1611, 15sylan9eqr 2802 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
17 oveq1 7455 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐴) = (+∞ +𝑒 𝐴))
18 xaddpnf2 13289 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
1912, 13, 18syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ → (+∞ +𝑒 𝐴) = +∞)
2017, 19sylan9eqr 2802 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐴) = +∞)
2116, 20eqtr4d 2783 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
22 oveq2 7456 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
23 renepnf 11338 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
24 xaddmnf1 13290 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2512, 23, 24syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
2622, 25sylan9eqr 2802 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
27 oveq1 7455 . . . . . . 7 (𝐵 = -∞ → (𝐵 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
28 xaddmnf2 13291 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
2912, 23, 28syl2anc 583 . . . . . . 7 (𝐴 ∈ ℝ → (-∞ +𝑒 𝐴) = -∞)
3027, 29sylan9eqr 2802 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐴) = -∞)
3126, 30eqtr4d 2783 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
3210, 21, 313jaodan 1431 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
332, 32sylan2b 593 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
34 pnfaddmnf 13292 . . . . . . . 8 (+∞ +𝑒 -∞) = 0
35 mnfaddpnf 13293 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
3634, 35eqtr4i 2771 . . . . . . 7 (+∞ +𝑒 -∞) = (-∞ +𝑒 +∞)
37 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
3837oveq2d 7464 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
3937oveq1d 7463 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
4036, 38, 393eqtr4a 2806 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
41 xaddpnf2 13289 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
42 xaddpnf1 13288 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4341, 42eqtr4d 2783 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4440, 43pm2.61dane 3035 . . . . 5 (𝐵 ∈ ℝ* → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4544adantl 481 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
46 simpl 482 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
4746oveq1d 7463 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
4846oveq2d 7464 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 +∞))
4945, 47, 483eqtr4d 2790 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
5035, 34eqtr4i 2771 . . . . . . 7 (-∞ +𝑒 +∞) = (+∞ +𝑒 -∞)
51 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
5251oveq2d 7464 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
5351oveq1d 7463 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (𝐵 +𝑒 -∞) = (+∞ +𝑒 -∞))
5450, 52, 533eqtr4a 2806 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
55 xaddmnf2 13291 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
56 xaddmnf1 13290 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
5755, 56eqtr4d 2783 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5854, 57pm2.61dane 3035 . . . . 5 (𝐵 ∈ ℝ* → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5958adantl 481 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
60 simpl 482 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
6160oveq1d 7463 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
6260oveq2d 7464 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 -∞))
6359, 61, 623eqtr4d 2790 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
6433, 49, 633jaoian 1430 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
651, 64sylanb 580 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-xadd 13176
This theorem is referenced by:  xaddlid  13304  xleadd2a  13316  xltadd2  13319  xposdif  13324  xadd4d  13365  hashunx  14435  xrsnsgrp  21443  xrs1cmn  21447  blcld  24539  xrsxmet  24850  metdstri  24892  vtxdginducedm1  29579  xaddeq0  32760  xlt2addrd  32765  xrge0npcan  33006  esumle  34022  esumlef  34026  measun  34175  difelcarsg  34275  xaddcomd  45239
  Copyright terms: Public domain W3C validator