MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcom Structured version   Visualization version   GIF version

Theorem xaddcom 13200
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 13076 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13076 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 11158 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 11158 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 11360 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7 rexadd 13192 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
8 rexadd 13192 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
98ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
106, 7, 93eqtr4d 2774 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
11 oveq2 7395 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
12 rexr 11220 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
13 renemnf 11223 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
14 xaddpnf1 13186 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
1611, 15sylan9eqr 2786 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
17 oveq1 7394 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐴) = (+∞ +𝑒 𝐴))
18 xaddpnf2 13187 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
1912, 13, 18syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (+∞ +𝑒 𝐴) = +∞)
2017, 19sylan9eqr 2786 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐴) = +∞)
2116, 20eqtr4d 2767 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
22 oveq2 7395 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
23 renepnf 11222 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
24 xaddmnf1 13188 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2512, 23, 24syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
2622, 25sylan9eqr 2786 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
27 oveq1 7394 . . . . . . 7 (𝐵 = -∞ → (𝐵 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
28 xaddmnf2 13189 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
2912, 23, 28syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (-∞ +𝑒 𝐴) = -∞)
3027, 29sylan9eqr 2786 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐴) = -∞)
3126, 30eqtr4d 2767 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
3210, 21, 313jaodan 1433 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
332, 32sylan2b 594 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
34 pnfaddmnf 13190 . . . . . . . 8 (+∞ +𝑒 -∞) = 0
35 mnfaddpnf 13191 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
3634, 35eqtr4i 2755 . . . . . . 7 (+∞ +𝑒 -∞) = (-∞ +𝑒 +∞)
37 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
3837oveq2d 7403 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
3937oveq1d 7402 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
4036, 38, 393eqtr4a 2790 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
41 xaddpnf2 13187 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
42 xaddpnf1 13186 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4341, 42eqtr4d 2767 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4440, 43pm2.61dane 3012 . . . . 5 (𝐵 ∈ ℝ* → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4544adantl 481 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
46 simpl 482 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
4746oveq1d 7402 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
4846oveq2d 7403 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 +∞))
4945, 47, 483eqtr4d 2774 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
5035, 34eqtr4i 2755 . . . . . . 7 (-∞ +𝑒 +∞) = (+∞ +𝑒 -∞)
51 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
5251oveq2d 7403 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
5351oveq1d 7402 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (𝐵 +𝑒 -∞) = (+∞ +𝑒 -∞))
5450, 52, 533eqtr4a 2790 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
55 xaddmnf2 13189 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
56 xaddmnf1 13188 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
5755, 56eqtr4d 2767 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5854, 57pm2.61dane 3012 . . . . 5 (𝐵 ∈ ℝ* → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5958adantl 481 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
60 simpl 482 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
6160oveq1d 7402 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
6260oveq2d 7403 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 -∞))
6359, 61, 623eqtr4d 2774 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
6433, 49, 633jaoian 1432 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
651, 64sylanb 581 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   +𝑒 cxad 13070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-xadd 13073
This theorem is referenced by:  xaddlid  13202  xleadd2a  13214  xltadd2  13217  xposdif  13222  xadd4d  13263  hashunx  14351  xrsnsgrp  21319  xrs1cmn  21323  blcld  24393  xrsxmet  24698  metdstri  24740  vtxdginducedm1  29471  xaddeq0  32676  xlt2addrd  32682  xrge0npcan  32961  esumle  34048  esumlef  34052  measun  34201  difelcarsg  34301  xaddcomd  45320
  Copyright terms: Public domain W3C validator