MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcom Structured version   Visualization version   GIF version

Theorem xaddcom 13159
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 13037 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13037 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 11141 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 11141 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 11341 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7 rexadd 13151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
8 rexadd 13151 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
98ancoms 459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
106, 7, 93eqtr4d 2786 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
11 oveq2 7365 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
12 rexr 11201 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
13 renemnf 11204 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
14 xaddpnf1 13145 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
1611, 15sylan9eqr 2798 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
17 oveq1 7364 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐴) = (+∞ +𝑒 𝐴))
18 xaddpnf2 13146 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
1912, 13, 18syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (+∞ +𝑒 𝐴) = +∞)
2017, 19sylan9eqr 2798 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐴) = +∞)
2116, 20eqtr4d 2779 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
22 oveq2 7365 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
23 renepnf 11203 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
24 xaddmnf1 13147 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2512, 23, 24syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
2622, 25sylan9eqr 2798 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
27 oveq1 7364 . . . . . . 7 (𝐵 = -∞ → (𝐵 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
28 xaddmnf2 13148 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
2912, 23, 28syl2anc 584 . . . . . . 7 (𝐴 ∈ ℝ → (-∞ +𝑒 𝐴) = -∞)
3027, 29sylan9eqr 2798 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐴) = -∞)
3126, 30eqtr4d 2779 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
3210, 21, 313jaodan 1430 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
332, 32sylan2b 594 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
34 pnfaddmnf 13149 . . . . . . . 8 (+∞ +𝑒 -∞) = 0
35 mnfaddpnf 13150 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
3634, 35eqtr4i 2767 . . . . . . 7 (+∞ +𝑒 -∞) = (-∞ +𝑒 +∞)
37 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
3837oveq2d 7373 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
3937oveq1d 7372 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
4036, 38, 393eqtr4a 2802 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
41 xaddpnf2 13146 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
42 xaddpnf1 13145 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4341, 42eqtr4d 2779 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4440, 43pm2.61dane 3032 . . . . 5 (𝐵 ∈ ℝ* → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4544adantl 482 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
46 simpl 483 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
4746oveq1d 7372 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
4846oveq2d 7373 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 +∞))
4945, 47, 483eqtr4d 2786 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
5035, 34eqtr4i 2767 . . . . . . 7 (-∞ +𝑒 +∞) = (+∞ +𝑒 -∞)
51 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
5251oveq2d 7373 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
5351oveq1d 7372 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (𝐵 +𝑒 -∞) = (+∞ +𝑒 -∞))
5450, 52, 533eqtr4a 2802 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
55 xaddmnf2 13148 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
56 xaddmnf1 13147 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
5755, 56eqtr4d 2779 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5854, 57pm2.61dane 3032 . . . . 5 (𝐵 ∈ ℝ* → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5958adantl 482 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
60 simpl 483 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
6160oveq1d 7372 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
6260oveq2d 7373 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 -∞))
6359, 61, 623eqtr4d 2786 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
6433, 49, 633jaoian 1429 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
651, 64sylanb 581 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1086   = wceq 1541  wcel 2106  wne 2943  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   +𝑒 cxad 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-xadd 13034
This theorem is referenced by:  xaddid2  13161  xleadd2a  13173  xltadd2  13176  xposdif  13181  xadd4d  13222  hashunx  14286  xrsnsgrp  20833  xrs1cmn  20837  blcld  23861  xrsxmet  24172  metdstri  24214  vtxdginducedm1  28491  xaddeq0  31658  xlt2addrd  31663  xrge0npcan  31885  esumle  32657  esumlef  32661  measun  32810  difelcarsg  32910  xaddcomd  43548
  Copyright terms: Public domain W3C validator