MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcom Structured version   Visualization version   GIF version

Theorem xaddcom 12630
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
Assertion
Ref Expression
xaddcom ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))

Proof of Theorem xaddcom
StepHypRef Expression
1 elxr 12508 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12508 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 recn 10625 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 10625 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 addcom 10824 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
63, 4, 5syl2an 598 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
7 rexadd 12622 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
8 rexadd 12622 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
98ancoms 462 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐴) = (𝐵 + 𝐴))
106, 7, 93eqtr4d 2869 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
11 oveq2 7157 . . . . . . 7 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
12 rexr 10685 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
13 renemnf 10688 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
14 xaddpnf1 12616 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
1512, 13, 14syl2anc 587 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 +∞) = +∞)
1611, 15sylan9eqr 2881 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
17 oveq1 7156 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐴) = (+∞ +𝑒 𝐴))
18 xaddpnf2 12617 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (+∞ +𝑒 𝐴) = +∞)
1912, 13, 18syl2anc 587 . . . . . . 7 (𝐴 ∈ ℝ → (+∞ +𝑒 𝐴) = +∞)
2017, 19sylan9eqr 2881 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐴) = +∞)
2116, 20eqtr4d 2862 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
22 oveq2 7157 . . . . . . 7 (𝐵 = -∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 -∞))
23 renepnf 10687 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
24 xaddmnf1 12618 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2512, 23, 24syl2anc 587 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
2622, 25sylan9eqr 2881 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
27 oveq1 7156 . . . . . . 7 (𝐵 = -∞ → (𝐵 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
28 xaddmnf2 12619 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
2912, 23, 28syl2anc 587 . . . . . . 7 (𝐴 ∈ ℝ → (-∞ +𝑒 𝐴) = -∞)
3027, 29sylan9eqr 2881 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐴) = -∞)
3126, 30eqtr4d 2862 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
3210, 21, 313jaodan 1427 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
332, 32sylan2b 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
34 pnfaddmnf 12620 . . . . . . . 8 (+∞ +𝑒 -∞) = 0
35 mnfaddpnf 12621 . . . . . . . 8 (-∞ +𝑒 +∞) = 0
3634, 35eqtr4i 2850 . . . . . . 7 (+∞ +𝑒 -∞) = (-∞ +𝑒 +∞)
37 simpr 488 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = -∞) → 𝐵 = -∞)
3837oveq2d 7165 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (+∞ +𝑒 -∞))
3937oveq1d 7164 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = -∞) → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
4036, 38, 393eqtr4a 2885 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
41 xaddpnf2 12617 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
42 xaddpnf1 12616 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4341, 42eqtr4d 2862 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4440, 43pm2.61dane 3101 . . . . 5 (𝐵 ∈ ℝ* → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
4544adantl 485 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ +𝑒 𝐵) = (𝐵 +𝑒 +∞))
46 simpl 486 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
4746oveq1d 7164 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
4846oveq2d 7165 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 +∞))
4945, 47, 483eqtr4d 2869 . . 3 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
5035, 34eqtr4i 2850 . . . . . . 7 (-∞ +𝑒 +∞) = (+∞ +𝑒 -∞)
51 simpr 488 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 = +∞) → 𝐵 = +∞)
5251oveq2d 7165 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (-∞ +𝑒 +∞))
5351oveq1d 7164 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 = +∞) → (𝐵 +𝑒 -∞) = (+∞ +𝑒 -∞))
5450, 52, 533eqtr4a 2885 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 = +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
55 xaddmnf2 12619 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
56 xaddmnf1 12618 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
5755, 56eqtr4d 2862 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5854, 57pm2.61dane 3101 . . . . 5 (𝐵 ∈ ℝ* → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
5958adantl 485 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (-∞ +𝑒 𝐵) = (𝐵 +𝑒 -∞))
60 simpl 486 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = -∞)
6160oveq1d 7164 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
6260oveq2d 7165 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐴) = (𝐵 +𝑒 -∞))
6359, 61, 623eqtr4d 2869 . . 3 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
6433, 49, 633jaoian 1426 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
651, 64sylanb 584 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = (𝐵 +𝑒 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3o 1083   = wceq 1538  wcel 2115  wne 3014  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535   + caddc 10538  +∞cpnf 10670  -∞cmnf 10671  *cxr 10672   +𝑒 cxad 12502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-xadd 12505
This theorem is referenced by:  xaddid2  12632  xleadd2a  12644  xltadd2  12647  xposdif  12652  xadd4d  12693  hashunx  13752  xrsnsgrp  20134  xrs1cmn  20138  blcld  23118  xrsxmet  23420  metdstri  23462  vtxdginducedm1  27339  xaddeq0  30491  xlt2addrd  30496  xrge0npcan  30716  esumle  31377  esumlef  31381  measun  31530  difelcarsg  31628  xaddcomd  41886
  Copyright terms: Public domain W3C validator