MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltnegi Structured version   Visualization version   GIF version

Theorem xltnegi 12601
Description: Forward direction of xltneg 12602. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 12503 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12503 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltneg 11133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
4 rexneg 12596 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
5 rexneg 12596 . . . . . . . . . 10 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
64, 5breqan12rd 5050 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝐵 < -𝐴))
73, 6bitr4d 285 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
87biimpd 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
9 xnegeq 12592 . . . . . . . . . . 11 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
10 xnegpnf 12594 . . . . . . . . . . 11 -𝑒+∞ = -∞
119, 10eqtrdi 2852 . . . . . . . . . 10 (𝐵 = +∞ → -𝑒𝐵 = -∞)
1211adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 = -∞)
13 renegcl 10942 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
145, 13eqeltrd 2893 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
1514mnfltd 12511 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1615adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞ < -𝑒𝐴)
1712, 16eqbrtrd 5055 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 < -𝑒𝐴)
1817a1d 25 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
19 simpr 488 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
2019breq2d 5045 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
21 rexr 10680 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 nltmnf 12516 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2321, 22syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2423adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
2524pm2.21d 121 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ → -𝑒𝐵 < -𝑒𝐴))
2620, 25sylbid 243 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
278, 18, 263jaodan 1427 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
282, 27sylan2b 596 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
2928expimpd 457 . . . 4 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
30 simpl 486 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
3130breq1d 5043 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
32 pnfnlt 12515 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3332adantl 485 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3433pm2.21d 121 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3531, 34sylbid 243 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3635expimpd 457 . . . 4 (𝐴 = +∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
37 breq1 5036 . . . . . 6 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3837anbi2d 631 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞ < 𝐵)))
39 renegcl 10942 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
404, 39eqeltrd 2893 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
4140adantr 484 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 ∈ ℝ)
4241ltpnfd 12508 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
4311adantr 484 . . . . . . . . 9 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 = -∞)
44 mnfltpnf 12513 . . . . . . . . 9 -∞ < +∞
4543, 44eqbrtrdi 5072 . . . . . . . 8 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
46 breq2 5037 . . . . . . . . . 10 (𝐵 = -∞ → (-∞ < 𝐵 ↔ -∞ < -∞))
47 mnfxr 10691 . . . . . . . . . . . 12 -∞ ∈ ℝ*
48 nltmnf 12516 . . . . . . . . . . . 12 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4947, 48ax-mp 5 . . . . . . . . . . 11 ¬ -∞ < -∞
5049pm2.21i 119 . . . . . . . . . 10 (-∞ < -∞ → -𝑒𝐵 < +∞)
5146, 50syl6bi 256 . . . . . . . . 9 (𝐵 = -∞ → (-∞ < 𝐵 → -𝑒𝐵 < +∞))
5251imp 410 . . . . . . . 8 ((𝐵 = -∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
5342, 45, 523jaoian 1426 . . . . . . 7 (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
542, 53sylanb 584 . . . . . 6 ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
55 xnegeq 12592 . . . . . . . 8 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
56 xnegmnf 12595 . . . . . . . 8 -𝑒-∞ = +∞
5755, 56eqtrdi 2852 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = +∞)
5857breq2d 5045 . . . . . 6 (𝐴 = -∞ → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝑒𝐵 < +∞))
5954, 58syl5ibr 249 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6038, 59sylbid 243 . . . 4 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6129, 36, 603jaoi 1424 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
621, 61sylbi 220 . 2 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
63623impib 1113 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2112   class class class wbr 5033  cr 10529  +∞cpnf 10665  -∞cmnf 10666  *cxr 10667   < clt 10668  -cneg 10864  -𝑒cxne 12496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-xneg 12499
This theorem is referenced by:  xltneg  12602  xrsdsreclblem  20141
  Copyright terms: Public domain W3C validator