MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltnegi Structured version   Visualization version   GIF version

Theorem xltnegi 13176
Description: Forward direction of xltneg 13177. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 13076 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 13076 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltneg 11678 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
4 rexneg 13171 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
5 rexneg 13171 . . . . . . . . . 10 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
64, 5breqan12rd 5124 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝐵 < -𝐴))
73, 6bitr4d 282 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
87biimpd 229 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
9 xnegeq 13167 . . . . . . . . . . 11 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
10 xnegpnf 13169 . . . . . . . . . . 11 -𝑒+∞ = -∞
119, 10eqtrdi 2780 . . . . . . . . . 10 (𝐵 = +∞ → -𝑒𝐵 = -∞)
1211adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 = -∞)
13 renegcl 11485 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
145, 13eqeltrd 2828 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
1514mnfltd 13084 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1615adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞ < -𝑒𝐴)
1712, 16eqbrtrd 5129 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 < -𝑒𝐴)
1817a1d 25 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
19 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
2019breq2d 5119 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
21 rexr 11220 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 nltmnf 13089 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2321, 22syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2423adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
2524pm2.21d 121 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ → -𝑒𝐵 < -𝑒𝐴))
2620, 25sylbid 240 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
278, 18, 263jaodan 1433 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
282, 27sylan2b 594 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
2928expimpd 453 . . . 4 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
30 simpl 482 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
3130breq1d 5117 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
32 pnfnlt 13088 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3332adantl 481 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3433pm2.21d 121 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3531, 34sylbid 240 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3635expimpd 453 . . . 4 (𝐴 = +∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
37 breq1 5110 . . . . . 6 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3837anbi2d 630 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞ < 𝐵)))
39 renegcl 11485 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
404, 39eqeltrd 2828 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
4140adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 ∈ ℝ)
4241ltpnfd 13081 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
4311adantr 480 . . . . . . . . 9 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 = -∞)
44 mnfltpnf 13086 . . . . . . . . 9 -∞ < +∞
4543, 44eqbrtrdi 5146 . . . . . . . 8 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
46 breq2 5111 . . . . . . . . . 10 (𝐵 = -∞ → (-∞ < 𝐵 ↔ -∞ < -∞))
47 mnfxr 11231 . . . . . . . . . . . 12 -∞ ∈ ℝ*
48 nltmnf 13089 . . . . . . . . . . . 12 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4947, 48ax-mp 5 . . . . . . . . . . 11 ¬ -∞ < -∞
5049pm2.21i 119 . . . . . . . . . 10 (-∞ < -∞ → -𝑒𝐵 < +∞)
5146, 50biimtrdi 253 . . . . . . . . 9 (𝐵 = -∞ → (-∞ < 𝐵 → -𝑒𝐵 < +∞))
5251imp 406 . . . . . . . 8 ((𝐵 = -∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
5342, 45, 523jaoian 1432 . . . . . . 7 (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
542, 53sylanb 581 . . . . . 6 ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
55 xnegeq 13167 . . . . . . . 8 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
56 xnegmnf 13170 . . . . . . . 8 -𝑒-∞ = +∞
5755, 56eqtrdi 2780 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = +∞)
5857breq2d 5119 . . . . . 6 (𝐴 = -∞ → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝑒𝐵 < +∞))
5954, 58imbitrrid 246 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6038, 59sylbid 240 . . . 4 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6129, 36, 603jaoi 1430 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
621, 61sylbi 217 . 2 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
63623impib 1116 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cr 11067  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  -cneg 11406  -𝑒cxne 13069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-xneg 13072
This theorem is referenced by:  xltneg  13177  xrsdsreclblem  21329
  Copyright terms: Public domain W3C validator