Proof of Theorem xltnegi
Step | Hyp | Ref
| Expression |
1 | | elxr 12781 |
. . 3
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
2 | | elxr 12781 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
3 | | ltneg 11405 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
4 | | rexneg 12874 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ →
-𝑒𝐵 =
-𝐵) |
5 | | rexneg 12874 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 =
-𝐴) |
6 | 4, 5 | breqan12rd 5087 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-𝑒𝐵
< -𝑒𝐴
↔ -𝐵 < -𝐴)) |
7 | 3, 6 | bitr4d 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴)) |
8 | 7 | biimpd 228 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴)) |
9 | | xnegeq 12870 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-𝑒+∞) |
10 | | xnegpnf 12872 |
. . . . . . . . . . 11
⊢
-𝑒+∞ = -∞ |
11 | 9, 10 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-∞) |
12 | 11 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐵 =
-∞) |
13 | | renegcl 11214 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
14 | 5, 13 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ) |
15 | 14 | mnfltd 12789 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → -∞
< -𝑒𝐴) |
16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞
< -𝑒𝐴) |
17 | 12, 16 | eqbrtrd 5092 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐵 <
-𝑒𝐴) |
18 | 17 | a1d 25 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴)) |
19 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞) |
20 | 19 | breq2d 5082 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
21 | | rexr 10952 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
22 | | nltmnf 12794 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) |
23 | 21, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → ¬
𝐴 <
-∞) |
24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
25 | 24 | pm2.21d 121 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ →
-𝑒𝐵 <
-𝑒𝐴)) |
26 | 20, 25 | sylbid 239 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴)) |
27 | 8, 18, 26 | 3jaodan 1428 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴)) |
28 | 2, 27 | sylan2b 593 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 →
-𝑒𝐵 <
-𝑒𝐴)) |
29 | 28 | expimpd 453 |
. . . 4
⊢ (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) →
-𝑒𝐵 <
-𝑒𝐴)) |
30 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ 𝐴 =
+∞) |
31 | 30 | breq1d 5080 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 ↔ +∞ < 𝐵)) |
32 | | pnfnlt 12793 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
33 | 32 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) |
34 | 33 | pm2.21d 121 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (+∞ < 𝐵
→ -𝑒𝐵 < -𝑒𝐴)) |
35 | 31, 34 | sylbid 239 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 →
-𝑒𝐵 <
-𝑒𝐴)) |
36 | 35 | expimpd 453 |
. . . 4
⊢ (𝐴 = +∞ → ((𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) →
-𝑒𝐵 <
-𝑒𝐴)) |
37 | | breq1 5073 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵)) |
38 | 37 | anbi2d 628 |
. . . . 5
⊢ (𝐴 = -∞ → ((𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞
< 𝐵))) |
39 | | renegcl 11214 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → -𝐵 ∈
ℝ) |
40 | 4, 39 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ →
-𝑒𝐵
∈ ℝ) |
41 | 40 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ -∞
< 𝐵) →
-𝑒𝐵
∈ ℝ) |
42 | 41 | ltpnfd 12786 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ ∧ -∞
< 𝐵) →
-𝑒𝐵 <
+∞) |
43 | 11 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐵 = +∞ ∧ -∞ <
𝐵) →
-𝑒𝐵 =
-∞) |
44 | | mnfltpnf 12791 |
. . . . . . . . 9
⊢ -∞
< +∞ |
45 | 43, 44 | eqbrtrdi 5109 |
. . . . . . . 8
⊢ ((𝐵 = +∞ ∧ -∞ <
𝐵) →
-𝑒𝐵 <
+∞) |
46 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝐵 = -∞ → (-∞
< 𝐵 ↔ -∞ <
-∞)) |
47 | | mnfxr 10963 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
48 | | nltmnf 12794 |
. . . . . . . . . . . 12
⊢ (-∞
∈ ℝ* → ¬ -∞ <
-∞) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ¬
-∞ < -∞ |
50 | 49 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (-∞
< -∞ → -𝑒𝐵 < +∞) |
51 | 46, 50 | syl6bi 252 |
. . . . . . . . 9
⊢ (𝐵 = -∞ → (-∞
< 𝐵 →
-𝑒𝐵 <
+∞)) |
52 | 51 | imp 406 |
. . . . . . . 8
⊢ ((𝐵 = -∞ ∧ -∞ <
𝐵) →
-𝑒𝐵 <
+∞) |
53 | 42, 45, 52 | 3jaoian 1427 |
. . . . . . 7
⊢ (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ <
𝐵) →
-𝑒𝐵 <
+∞) |
54 | 2, 53 | sylanb 580 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ -∞ < 𝐵)
→ -𝑒𝐵 < +∞) |
55 | | xnegeq 12870 |
. . . . . . . 8
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
-𝑒-∞) |
56 | | xnegmnf 12873 |
. . . . . . . 8
⊢
-𝑒-∞ = +∞ |
57 | 55, 56 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
+∞) |
58 | 57 | breq2d 5082 |
. . . . . 6
⊢ (𝐴 = -∞ →
(-𝑒𝐵
< -𝑒𝐴
↔ -𝑒𝐵 < +∞)) |
59 | 54, 58 | syl5ibr 245 |
. . . . 5
⊢ (𝐴 = -∞ → ((𝐵 ∈ ℝ*
∧ -∞ < 𝐵)
→ -𝑒𝐵 < -𝑒𝐴)) |
60 | 38, 59 | sylbid 239 |
. . . 4
⊢ (𝐴 = -∞ → ((𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) →
-𝑒𝐵 <
-𝑒𝐴)) |
61 | 29, 36, 60 | 3jaoi 1425 |
. . 3
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*
∧ 𝐴 < 𝐵) →
-𝑒𝐵 <
-𝑒𝐴)) |
62 | 1, 61 | sylbi 216 |
. 2
⊢ (𝐴 ∈ ℝ*
→ ((𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) →
-𝑒𝐵 <
-𝑒𝐴)) |
63 | 62 | 3impib 1114 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) →
-𝑒𝐵 <
-𝑒𝐴) |