MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xltnegi Structured version   Visualization version   GIF version

Theorem xltnegi 12879
Description: Forward direction of xltneg 12880. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 12781 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 12781 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltneg 11405 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
4 rexneg 12874 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
5 rexneg 12874 . . . . . . . . . 10 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
64, 5breqan12rd 5087 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝐵 < -𝐴))
73, 6bitr4d 281 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
87biimpd 228 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
9 xnegeq 12870 . . . . . . . . . . 11 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
10 xnegpnf 12872 . . . . . . . . . . 11 -𝑒+∞ = -∞
119, 10eqtrdi 2795 . . . . . . . . . 10 (𝐵 = +∞ → -𝑒𝐵 = -∞)
1211adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 = -∞)
13 renegcl 11214 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
145, 13eqeltrd 2839 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
1514mnfltd 12789 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1615adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞ < -𝑒𝐴)
1712, 16eqbrtrd 5092 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 < -𝑒𝐴)
1817a1d 25 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
19 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
2019breq2d 5082 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
21 rexr 10952 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
22 nltmnf 12794 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2321, 22syl 17 . . . . . . . . . 10 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2423adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
2524pm2.21d 121 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ → -𝑒𝐵 < -𝑒𝐴))
2620, 25sylbid 239 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
278, 18, 263jaodan 1428 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
282, 27sylan2b 593 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
2928expimpd 453 . . . 4 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
30 simpl 482 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
3130breq1d 5080 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
32 pnfnlt 12793 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3332adantl 481 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3433pm2.21d 121 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3531, 34sylbid 239 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3635expimpd 453 . . . 4 (𝐴 = +∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
37 breq1 5073 . . . . . 6 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3837anbi2d 628 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞ < 𝐵)))
39 renegcl 11214 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
404, 39eqeltrd 2839 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
4140adantr 480 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 ∈ ℝ)
4241ltpnfd 12786 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
4311adantr 480 . . . . . . . . 9 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 = -∞)
44 mnfltpnf 12791 . . . . . . . . 9 -∞ < +∞
4543, 44eqbrtrdi 5109 . . . . . . . 8 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
46 breq2 5074 . . . . . . . . . 10 (𝐵 = -∞ → (-∞ < 𝐵 ↔ -∞ < -∞))
47 mnfxr 10963 . . . . . . . . . . . 12 -∞ ∈ ℝ*
48 nltmnf 12794 . . . . . . . . . . . 12 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4947, 48ax-mp 5 . . . . . . . . . . 11 ¬ -∞ < -∞
5049pm2.21i 119 . . . . . . . . . 10 (-∞ < -∞ → -𝑒𝐵 < +∞)
5146, 50syl6bi 252 . . . . . . . . 9 (𝐵 = -∞ → (-∞ < 𝐵 → -𝑒𝐵 < +∞))
5251imp 406 . . . . . . . 8 ((𝐵 = -∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
5342, 45, 523jaoian 1427 . . . . . . 7 (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
542, 53sylanb 580 . . . . . 6 ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
55 xnegeq 12870 . . . . . . . 8 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
56 xnegmnf 12873 . . . . . . . 8 -𝑒-∞ = +∞
5755, 56eqtrdi 2795 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = +∞)
5857breq2d 5082 . . . . . 6 (𝐴 = -∞ → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝑒𝐵 < +∞))
5954, 58syl5ibr 245 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6038, 59sylbid 239 . . . 4 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6129, 36, 603jaoi 1425 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
621, 61sylbi 216 . 2 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
63623impib 1114 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cr 10801  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  -cneg 11136  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-xneg 12777
This theorem is referenced by:  xltneg  12880  xrsdsreclblem  20556
  Copyright terms: Public domain W3C validator