MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3i Structured version   Visualization version   GIF version

Theorem 3sstr3i 3994
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1 𝐴𝐵
3sstr3.2 𝐴 = 𝐶
3sstr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3i 𝐶𝐷

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.2 . . 3 𝐴 = 𝐶
2 3sstr3.1 . . 3 𝐴𝐵
31, 2eqsstrri 3991 . 2 𝐶𝐵
4 3sstr3.3 . 2 𝐵 = 𝐷
53, 4sseqtri 3992 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928
This theorem is referenced by:  ttrclco  9647  cottrcl  9648  odf1o2  19487  leordtval2  23132  uniiccvol  25514  ballotlem2  34473  cotrcltrcl  43707
  Copyright terms: Public domain W3C validator