MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3sstr3i Structured version   Visualization version   GIF version

Theorem 3sstr3i 3963
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1 𝐴𝐵
3sstr3.2 𝐴 = 𝐶
3sstr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3sstr3i 𝐶𝐷

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2 𝐴𝐵
2 3sstr3.2 . . 3 𝐴 = 𝐶
3 3sstr3.3 . . 3 𝐵 = 𝐷
42, 3sseq12i 3951 . 2 (𝐴𝐵𝐶𝐷)
51, 4mpbi 229 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  ttrclco  9476  cottrcl  9477  odf1o2  19178  leordtval2  22363  uniiccvol  24744  ballotlem2  32455  cotrcltrcl  41333
  Copyright terms: Public domain W3C validator