| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| sseq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| sseq12i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | sseq12 4011 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-ss 3968 |
| This theorem is referenced by: ss2rab 4071 rabsssn 4668 fldhmsubc 20786 issubgr 29288 pjordi 32192 mdsldmd1i 32350 rabsspr 32520 rabsstp 32521 iuninc 32573 cvmlift2lem12 35319 brtrclfv2 43740 nzss 44336 hoidmvle 46615 fldhmsubcALTV 48249 |
| Copyright terms: Public domain | W3C validator |