| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| sseq1i.1 | ⊢ 𝐴 = 𝐵 |
| sseq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| sseq12i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sseq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | sseq12 3977 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: ss2rab 4037 rabsssn 4635 fldhmsubc 20701 issubgr 29205 pjordi 32109 mdsldmd1i 32267 rabsspr 32437 rabsstp 32438 iuninc 32496 cvmlift2lem12 35308 brtrclfv2 43723 nzss 44313 hoidmvle 46605 fldhmsubcALTV 48325 |
| Copyright terms: Public domain | W3C validator |