MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12i Structured version   Visualization version   GIF version

Theorem sseq12i 3947
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 𝐴 = 𝐵
sseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
sseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq12i.2 . 2 𝐶 = 𝐷
3 sseq12 3944 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
41, 2, 3mp2an 688 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  3sstr3i  3959  3sstr4i  3960  3sstr3g  3961  3sstr4g  3962  ss2rab  4000  rabsssn  4600  issubgr  27541  pjordi  30436  mdsldmd1i  30594  iuninc  30801  cvmlift2lem12  33176  brtrclfv2  41224  nzss  41824  hoidmvle  44028  ovolval5lem3  44082  fldhmsubc  45530  fldhmsubcALTV  45548
  Copyright terms: Public domain W3C validator