MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12i Structured version   Visualization version   GIF version

Theorem sseq12i 4026
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 𝐴 = 𝐵
sseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
sseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq12i.2 . 2 𝐶 = 𝐷
3 sseq12 4023 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
41, 2, 3mp2an 692 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-ss 3980
This theorem is referenced by:  3sstr3i  4038  3sstr4i  4039  3sstr3g  4040  3sstr4g  4041  ss2rab  4081  rabsssn  4673  fldhmsubc  20803  issubgr  29303  pjordi  32202  mdsldmd1i  32360  rabsspr  32529  rabsstp  32530  iuninc  32581  cvmlift2lem12  35299  brtrclfv2  43717  nzss  44313  hoidmvle  46556  fldhmsubcALTV  48177
  Copyright terms: Public domain W3C validator