MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12i Structured version   Visualization version   GIF version

Theorem sseq12i 3950
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 𝐴 = 𝐵
sseq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
sseq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 𝐴 = 𝐵
2 sseq12i.2 . 2 𝐶 = 𝐷
3 sseq12 3947 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
41, 2, 3mp2an 689 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wss 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3431  df-in 3893  df-ss 3903
This theorem is referenced by:  3sstr3i  3962  3sstr4i  3963  3sstr3g  3964  3sstr4g  3965  ss2rab  4003  rabsssn  4603  issubgr  27648  pjordi  30543  mdsldmd1i  30701  iuninc  30908  cvmlift2lem12  33284  brtrclfv2  41316  nzss  41916  hoidmvle  44119  ovolval5lem3  44173  fldhmsubc  45620  fldhmsubcALTV  45638
  Copyright terms: Public domain W3C validator