Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseq12i | Structured version Visualization version GIF version |
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
sseq1i.1 | ⊢ 𝐴 = 𝐵 |
sseq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
sseq12i | ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sseq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | sseq12 3947 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-in 3893 df-ss 3903 |
This theorem is referenced by: 3sstr3i 3962 3sstr4i 3963 3sstr3g 3964 3sstr4g 3965 ss2rab 4003 rabsssn 4603 issubgr 27648 pjordi 30543 mdsldmd1i 30701 iuninc 30908 cvmlift2lem12 33284 brtrclfv2 41316 nzss 41916 hoidmvle 44119 ovolval5lem3 44173 fldhmsubc 45620 fldhmsubcALTV 45638 |
Copyright terms: Public domain | W3C validator |