Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrcltrcl Structured version   Visualization version   GIF version

Theorem cotrcltrcl 43749
Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.)
Assertion
Ref Expression
cotrcltrcl (t+ ∘ t+) = t+

Proof of Theorem cotrcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 43744 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dftrcl3 43744 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dftrcl3 43744 . 2 t+ = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ (𝑐𝑟𝑘))
4 nnex 12246 . 2 ℕ ∈ V
5 unidm 4132 . . 3 (ℕ ∪ ℕ) = ℕ
65eqcomi 2744 . 2 ℕ = (ℕ ∪ ℕ)
7 1ex 11231 . . . . . 6 1 ∈ V
8 oveq2 7413 . . . . . 6 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
97, 8iunxsn 5067 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
10 ovex 7438 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
114, 10iunex 7967 . . . . . . 7 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
12 relexp1g 15045 . . . . . . 7 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
1311, 12ax-mp 5 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
14 oveq2 7413 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
1514cbviunv 5016 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1613, 15eqtri 2758 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
179, 16eqtri 2758 . . . 4 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1817eqcomi 2744 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
19 1nn 12251 . . . 4 1 ∈ ℕ
20 snssi 4784 . . . 4 (1 ∈ ℕ → {1} ⊆ ℕ)
21 iunss1 4982 . . . 4 ({1} ⊆ ℕ → 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
2219, 20, 21mp2b 10 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
2318, 22eqsstri 4005 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
24 iunss 5021 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
25 oveq2 7413 . . . . . 6 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
2625sseq1d 3990 . . . . 5 (𝑥 = 1 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
27 oveq2 7413 . . . . . 6 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦))
2827sseq1d 3990 . . . . 5 (𝑥 = 𝑦 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
29 oveq2 7413 . . . . . 6 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)))
3029sseq1d 3990 . . . . 5 (𝑥 = (𝑦 + 1) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
31 oveq2 7413 . . . . . 6 (𝑥 = 𝑖 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3231sseq1d 3990 . . . . 5 (𝑥 = 𝑖 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
3316eqimssi 4019 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
34 simpl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
35 relexpsucnnr 15044 . . . . . . . 8 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3611, 34, 35sylancr 587 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
37 coss1 5835 . . . . . . . . 9 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3837adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3915coeq2i 5840 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
40 trclfvcotrg 15035 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) ⊆ (t+‘𝑑)
41 oveq1 7412 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑐𝑟𝑘) = (𝑑𝑟𝑘))
4241iuneq2d 4998 . . . . . . . . . . . . 13 (𝑐 = 𝑑 𝑘 ∈ ℕ (𝑐𝑟𝑘) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
43 ovex 7438 . . . . . . . . . . . . . 14 (𝑑𝑟𝑘) ∈ V
444, 43iunex 7967 . . . . . . . . . . . . 13 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∈ V
4542, 3, 44fvmpt 6986 . . . . . . . . . . . 12 (𝑑 ∈ V → (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4645elv 3464 . . . . . . . . . . 11 (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4746, 46coeq12i 5843 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4840, 47, 463sstr3i 4009 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4939, 48eqsstri 4005 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
5038, 49sstrdi 3971 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5136, 50eqsstrd 3993 . . . . . 6 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5251ex 412 . . . . 5 (𝑦 ∈ ℕ → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5326, 28, 30, 32, 33, 52nnind 12258 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5424, 53mprgbir 3058 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
55 iuneq1 4984 . . . 4 (ℕ = (ℕ ∪ ℕ) → 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘))
566, 55ax-mp 5 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
5754, 56sseqtri 4007 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
581, 2, 3, 4, 4, 6, 23, 23, 57comptiunov2i 43730 1 (t+ ∘ t+) = t+
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  {csn 4601   ciun 4967  ccom 5658  cfv 6531  (class class class)co 7405  1c1 11130   + caddc 11132  cn 12240  t+ctcl 15004  𝑟crelexp 15038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-trcl 15006  df-relexp 15039
This theorem is referenced by:  cortrcltrcl  43764  cotrclrtrcl  43768
  Copyright terms: Public domain W3C validator