Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrcltrcl Structured version   Visualization version   GIF version

Theorem cotrcltrcl 43687
Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.)
Assertion
Ref Expression
cotrcltrcl (t+ ∘ t+) = t+

Proof of Theorem cotrcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 43682 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dftrcl3 43682 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dftrcl3 43682 . 2 t+ = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ (𝑐𝑟𝑘))
4 nnex 12299 . 2 ℕ ∈ V
5 unidm 4180 . . 3 (ℕ ∪ ℕ) = ℕ
65eqcomi 2749 . 2 ℕ = (ℕ ∪ ℕ)
7 1ex 11286 . . . . . 6 1 ∈ V
8 oveq2 7456 . . . . . 6 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
97, 8iunxsn 5114 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
10 ovex 7481 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
114, 10iunex 8009 . . . . . . 7 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
12 relexp1g 15075 . . . . . . 7 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
1311, 12ax-mp 5 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
14 oveq2 7456 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
1514cbviunv 5063 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1613, 15eqtri 2768 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
179, 16eqtri 2768 . . . 4 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1817eqcomi 2749 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
19 1nn 12304 . . . 4 1 ∈ ℕ
20 snssi 4833 . . . 4 (1 ∈ ℕ → {1} ⊆ ℕ)
21 iunss1 5029 . . . 4 ({1} ⊆ ℕ → 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
2219, 20, 21mp2b 10 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
2318, 22eqsstri 4043 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
24 iunss 5068 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
25 oveq2 7456 . . . . . 6 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
2625sseq1d 4040 . . . . 5 (𝑥 = 1 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
27 oveq2 7456 . . . . . 6 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦))
2827sseq1d 4040 . . . . 5 (𝑥 = 𝑦 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
29 oveq2 7456 . . . . . 6 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)))
3029sseq1d 4040 . . . . 5 (𝑥 = (𝑦 + 1) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
31 oveq2 7456 . . . . . 6 (𝑥 = 𝑖 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3231sseq1d 4040 . . . . 5 (𝑥 = 𝑖 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
3316eqimssi 4069 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
34 simpl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
35 relexpsucnnr 15074 . . . . . . . 8 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3611, 34, 35sylancr 586 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
37 coss1 5880 . . . . . . . . 9 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3837adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3915coeq2i 5885 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
40 trclfvcotrg 15065 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) ⊆ (t+‘𝑑)
41 oveq1 7455 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑐𝑟𝑘) = (𝑑𝑟𝑘))
4241iuneq2d 5045 . . . . . . . . . . . . 13 (𝑐 = 𝑑 𝑘 ∈ ℕ (𝑐𝑟𝑘) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
43 ovex 7481 . . . . . . . . . . . . . 14 (𝑑𝑟𝑘) ∈ V
444, 43iunex 8009 . . . . . . . . . . . . 13 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∈ V
4542, 3, 44fvmpt 7029 . . . . . . . . . . . 12 (𝑑 ∈ V → (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4645elv 3493 . . . . . . . . . . 11 (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4746, 46coeq12i 5888 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4840, 47, 463sstr3i 4051 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4939, 48eqsstri 4043 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
5038, 49sstrdi 4021 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5136, 50eqsstrd 4047 . . . . . 6 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5251ex 412 . . . . 5 (𝑦 ∈ ℕ → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5326, 28, 30, 32, 33, 52nnind 12311 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5424, 53mprgbir 3074 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
55 iuneq1 5031 . . . 4 (ℕ = (ℕ ∪ ℕ) → 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘))
566, 55ax-mp 5 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
5754, 56sseqtri 4045 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
581, 2, 3, 4, 4, 6, 23, 23, 57comptiunov2i 43668 1 (t+ ∘ t+) = t+
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  {csn 4648   ciun 5015  ccom 5704  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  cn 12293  t+ctcl 15034  𝑟crelexp 15068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-trcl 15036  df-relexp 15069
This theorem is referenced by:  cortrcltrcl  43702  cotrclrtrcl  43706
  Copyright terms: Public domain W3C validator