Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrcltrcl Structured version   Visualization version   GIF version

Theorem cotrcltrcl 41303
Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.)
Assertion
Ref Expression
cotrcltrcl (t+ ∘ t+) = t+

Proof of Theorem cotrcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 41298 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dftrcl3 41298 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dftrcl3 41298 . 2 t+ = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ (𝑐𝑟𝑘))
4 nnex 11977 . 2 ℕ ∈ V
5 unidm 4087 . . 3 (ℕ ∪ ℕ) = ℕ
65eqcomi 2747 . 2 ℕ = (ℕ ∪ ℕ)
7 1ex 10969 . . . . . 6 1 ∈ V
8 oveq2 7285 . . . . . 6 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
97, 8iunxsn 5022 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
10 ovex 7310 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
114, 10iunex 7811 . . . . . . 7 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
12 relexp1g 14735 . . . . . . 7 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
1311, 12ax-mp 5 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
14 oveq2 7285 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
1514cbviunv 4972 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1613, 15eqtri 2766 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
179, 16eqtri 2766 . . . 4 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1817eqcomi 2747 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
19 1nn 11982 . . . 4 1 ∈ ℕ
20 snssi 4743 . . . 4 (1 ∈ ℕ → {1} ⊆ ℕ)
21 iunss1 4940 . . . 4 ({1} ⊆ ℕ → 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
2219, 20, 21mp2b 10 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
2318, 22eqsstri 3956 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
24 iunss 4977 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
25 oveq2 7285 . . . . . 6 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
2625sseq1d 3953 . . . . 5 (𝑥 = 1 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
27 oveq2 7285 . . . . . 6 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦))
2827sseq1d 3953 . . . . 5 (𝑥 = 𝑦 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
29 oveq2 7285 . . . . . 6 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)))
3029sseq1d 3953 . . . . 5 (𝑥 = (𝑦 + 1) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
31 oveq2 7285 . . . . . 6 (𝑥 = 𝑖 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3231sseq1d 3953 . . . . 5 (𝑥 = 𝑖 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
3316eqimssi 3980 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
34 simpl 483 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
35 relexpsucnnr 14734 . . . . . . . 8 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3611, 34, 35sylancr 587 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
37 coss1 5766 . . . . . . . . 9 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3837adantl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3915coeq2i 5771 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
40 trclfvcotrg 14725 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) ⊆ (t+‘𝑑)
41 oveq1 7284 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑐𝑟𝑘) = (𝑑𝑟𝑘))
4241iuneq2d 4955 . . . . . . . . . . . . 13 (𝑐 = 𝑑 𝑘 ∈ ℕ (𝑐𝑟𝑘) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
43 ovex 7310 . . . . . . . . . . . . . 14 (𝑑𝑟𝑘) ∈ V
444, 43iunex 7811 . . . . . . . . . . . . 13 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∈ V
4542, 3, 44fvmpt 6877 . . . . . . . . . . . 12 (𝑑 ∈ V → (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4645elv 3437 . . . . . . . . . . 11 (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4746, 46coeq12i 5774 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4840, 47, 463sstr3i 3964 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4939, 48eqsstri 3956 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
5038, 49sstrdi 3934 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5136, 50eqsstrd 3960 . . . . . 6 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5251ex 413 . . . . 5 (𝑦 ∈ ℕ → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5326, 28, 30, 32, 33, 52nnind 11989 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5424, 53mprgbir 3079 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
55 iuneq1 4942 . . . 4 (ℕ = (ℕ ∪ ℕ) → 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘))
566, 55ax-mp 5 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
5754, 56sseqtri 3958 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
581, 2, 3, 4, 4, 6, 23, 23, 57comptiunov2i 41284 1 (t+ ∘ t+) = t+
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  Vcvv 3431  cun 3886  wss 3888  {csn 4563   ciun 4926  ccom 5595  cfv 6435  (class class class)co 7277  1c1 10870   + caddc 10872  cn 11971  t+ctcl 14694  𝑟crelexp 14728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12581  df-seq 13720  df-trcl 14696  df-relexp 14729
This theorem is referenced by:  cortrcltrcl  41318  cotrclrtrcl  41322
  Copyright terms: Public domain W3C validator