Step | Hyp | Ref
| Expression |
1 | | dftrcl3 41298 |
. 2
⊢ t+ =
(𝑎 ∈ V ↦
∪ 𝑖 ∈ ℕ (𝑎↑𝑟𝑖)) |
2 | | dftrcl3 41298 |
. 2
⊢ t+ =
(𝑏 ∈ V ↦
∪ 𝑗 ∈ ℕ (𝑏↑𝑟𝑗)) |
3 | | dftrcl3 41298 |
. 2
⊢ t+ =
(𝑐 ∈ V ↦
∪ 𝑘 ∈ ℕ (𝑐↑𝑟𝑘)) |
4 | | nnex 11977 |
. 2
⊢ ℕ
∈ V |
5 | | unidm 4087 |
. . 3
⊢ (ℕ
∪ ℕ) = ℕ |
6 | 5 | eqcomi 2747 |
. 2
⊢ ℕ =
(ℕ ∪ ℕ) |
7 | | 1ex 10969 |
. . . . . 6
⊢ 1 ∈
V |
8 | | oveq2 7285 |
. . . . . 6
⊢ (𝑖 = 1 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1)) |
9 | 7, 8 | iunxsn 5022 |
. . . . 5
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) |
10 | | ovex 7310 |
. . . . . . . 8
⊢ (𝑑↑𝑟𝑗) ∈ V |
11 | 4, 10 | iunex 7811 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V |
12 | | relexp1g 14735 |
. . . . . . 7
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
14 | | oveq2 7285 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑑↑𝑟𝑗) = (𝑑↑𝑟𝑘)) |
15 | 14 | cbviunv 4972 |
. . . . . 6
⊢ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
16 | 13, 15 | eqtri 2766 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
17 | 9, 16 | eqtri 2766 |
. . . 4
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
18 | 17 | eqcomi 2747 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
19 | | 1nn 11982 |
. . . 4
⊢ 1 ∈
ℕ |
20 | | snssi 4743 |
. . . 4
⊢ (1 ∈
ℕ → {1} ⊆ ℕ) |
21 | | iunss1 4940 |
. . . 4
⊢ ({1}
⊆ ℕ → ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
22 | 19, 20, 21 | mp2b 10 |
. . 3
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
23 | 18, 22 | eqsstri 3956 |
. 2
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
24 | | iunss 4977 |
. . . 4
⊢ (∪ 𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
25 | | oveq2 7285 |
. . . . . 6
⊢ (𝑥 = 1 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1)) |
26 | 25 | sseq1d 3953 |
. . . . 5
⊢ (𝑥 = 1 → ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ↔ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
27 | | oveq2 7285 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) = (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦)) |
28 | 27 | sseq1d 3953 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ↔ (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
29 | | oveq2 7285 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1))) |
30 | 29 | sseq1d 3953 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ↔ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
31 | | oveq2 7285 |
. . . . . 6
⊢ (𝑥 = 𝑖 → (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) = (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
32 | 31 | sseq1d 3953 |
. . . . 5
⊢ (𝑥 = 𝑖 → ((∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑥) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ↔ (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
33 | 16 | eqimssi 3980 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
34 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → 𝑦 ∈ ℕ) |
35 | | relexpsucnnr 14734 |
. . . . . . . 8
⊢
((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗))) |
36 | 11, 34, 35 | sylancr 587 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1)) = ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗))) |
37 | | coss1 5766 |
. . . . . . . . 9
⊢
((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) → ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) ⊆ (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗))) |
38 | 37 | adantl 482 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) ⊆ (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗))) |
39 | 15 | coeq2i 5771 |
. . . . . . . . 9
⊢ (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) = (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
40 | | trclfvcotrg 14725 |
. . . . . . . . . 10
⊢
((t+‘𝑑)
∘ (t+‘𝑑))
⊆ (t+‘𝑑) |
41 | | oveq1 7284 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑑 → (𝑐↑𝑟𝑘) = (𝑑↑𝑟𝑘)) |
42 | 41 | iuneq2d 4955 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑑 → ∪
𝑘 ∈ ℕ (𝑐↑𝑟𝑘) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
43 | | ovex 7310 |
. . . . . . . . . . . . . 14
⊢ (𝑑↑𝑟𝑘) ∈ V |
44 | 4, 43 | iunex 7811 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∈ V |
45 | 42, 3, 44 | fvmpt 6877 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ V → (t+‘𝑑) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
46 | 45 | elv 3437 |
. . . . . . . . . . 11
⊢
(t+‘𝑑) =
∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
47 | 46, 46 | coeq12i 5774 |
. . . . . . . . . 10
⊢
((t+‘𝑑)
∘ (t+‘𝑑)) =
(∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
48 | 40, 47, 46 | 3sstr3i 3964 |
. . . . . . . . 9
⊢ (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
49 | 39, 48 | eqsstri 3956 |
. . . . . . . 8
⊢ (∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
50 | 38, 49 | sstrdi 3934 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → ((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ∘ ∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
51 | 36, 50 | eqsstrd 3960 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
52 | 51 | ex 413 |
. . . . 5
⊢ (𝑦 ∈ ℕ →
((∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑦) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
53 | 26, 28, 30, 32, 33, 52 | nnind 11989 |
. . . 4
⊢ (𝑖 ∈ ℕ → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
54 | 24, 53 | mprgbir 3079 |
. . 3
⊢ ∪ 𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
55 | | iuneq1 4942 |
. . . 4
⊢ (ℕ
= (ℕ ∪ ℕ) → ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = ∪ 𝑘 ∈ (ℕ ∪ ℕ)(𝑑↑𝑟𝑘)) |
56 | 6, 55 | ax-mp 5 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = ∪ 𝑘 ∈ (ℕ ∪
ℕ)(𝑑↑𝑟𝑘) |
57 | 54, 56 | sseqtri 3958 |
. 2
⊢ ∪ 𝑖 ∈ ℕ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ (ℕ ∪
ℕ)(𝑑↑𝑟𝑘) |
58 | 1, 2, 3, 4, 4, 6, 23, 23, 57 | comptiunov2i 41284 |
1
⊢ (t+
∘ t+) = t+ |