Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrcltrcl Structured version   Visualization version   GIF version

Theorem cotrcltrcl 41987
Description: The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.)
Assertion
Ref Expression
cotrcltrcl (t+ ∘ t+) = t+

Proof of Theorem cotrcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 41982 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dftrcl3 41982 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dftrcl3 41982 . 2 t+ = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ (𝑐𝑟𝑘))
4 nnex 12159 . 2 ℕ ∈ V
5 unidm 4112 . . 3 (ℕ ∪ ℕ) = ℕ
65eqcomi 2745 . 2 ℕ = (ℕ ∪ ℕ)
7 1ex 11151 . . . . . 6 1 ∈ V
8 oveq2 7365 . . . . . 6 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
97, 8iunxsn 5051 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
10 ovex 7390 . . . . . . . 8 (𝑑𝑟𝑗) ∈ V
114, 10iunex 7901 . . . . . . 7 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
12 relexp1g 14911 . . . . . . 7 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
1311, 12ax-mp 5 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
14 oveq2 7365 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
1514cbviunv 5000 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1613, 15eqtri 2764 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
179, 16eqtri 2764 . . . 4 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
1817eqcomi 2745 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
19 1nn 12164 . . . 4 1 ∈ ℕ
20 snssi 4768 . . . 4 (1 ∈ ℕ → {1} ⊆ ℕ)
21 iunss1 4968 . . . 4 ({1} ⊆ ℕ → 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
2219, 20, 21mp2b 10 . . 3 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
2318, 22eqsstri 3978 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
24 iunss 5005 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
25 oveq2 7365 . . . . . 6 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
2625sseq1d 3975 . . . . 5 (𝑥 = 1 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
27 oveq2 7365 . . . . . 6 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦))
2827sseq1d 3975 . . . . 5 (𝑥 = 𝑦 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
29 oveq2 7365 . . . . . 6 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)))
3029sseq1d 3975 . . . . 5 (𝑥 = (𝑦 + 1) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
31 oveq2 7365 . . . . . 6 (𝑥 = 𝑖 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3231sseq1d 3975 . . . . 5 (𝑥 = 𝑖 → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ↔ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
3316eqimssi 4002 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
34 simpl 483 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
35 relexpsucnnr 14910 . . . . . . . 8 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3611, 34, 35sylancr 587 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
37 coss1 5811 . . . . . . . . 9 (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3837adantl 482 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)))
3915coeq2i 5816 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
40 trclfvcotrg 14901 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) ⊆ (t+‘𝑑)
41 oveq1 7364 . . . . . . . . . . . . . 14 (𝑐 = 𝑑 → (𝑐𝑟𝑘) = (𝑑𝑟𝑘))
4241iuneq2d 4983 . . . . . . . . . . . . 13 (𝑐 = 𝑑 𝑘 ∈ ℕ (𝑐𝑟𝑘) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
43 ovex 7390 . . . . . . . . . . . . . 14 (𝑑𝑟𝑘) ∈ V
444, 43iunex 7901 . . . . . . . . . . . . 13 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∈ V
4542, 3, 44fvmpt 6948 . . . . . . . . . . . 12 (𝑑 ∈ V → (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4645elv 3451 . . . . . . . . . . 11 (t+‘𝑑) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4746, 46coeq12i 5819 . . . . . . . . . 10 ((t+‘𝑑) ∘ (t+‘𝑑)) = ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
4840, 47, 463sstr3i 3986 . . . . . . . . 9 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
4939, 48eqsstri 3978 . . . . . . . 8 ( 𝑘 ∈ ℕ (𝑑𝑟𝑘) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
5038, 49sstrdi 3956 . . . . . . 7 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝑑𝑟𝑗)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5136, 50eqsstrd 3982 . . . . . 6 ((𝑦 ∈ ℕ ∧ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5251ex 413 . . . . 5 (𝑦 ∈ ℕ → (( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5326, 28, 30, 32, 33, 52nnind 12171 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
5424, 53mprgbir 3071 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
55 iuneq1 4970 . . . 4 (ℕ = (ℕ ∪ ℕ) → 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘))
566, 55ax-mp 5 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
5754, 56sseqtri 3980 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ ℕ)(𝑑𝑟𝑘)
581, 2, 3, 4, 4, 6, 23, 23, 57comptiunov2i 41968 1 (t+ ∘ t+) = t+
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cun 3908  wss 3910  {csn 4586   ciun 4954  ccom 5637  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  cn 12153  t+ctcl 14870  𝑟crelexp 14904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-trcl 14872  df-relexp 14905
This theorem is referenced by:  cortrcltrcl  42002  cotrclrtrcl  42006
  Copyright terms: Public domain W3C validator