| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cottrcl | Structured version Visualization version GIF version | ||
| Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
| Ref | Expression |
|---|---|
| cottrcl | ⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5976 | . . . . 5 ⊢ Rel (𝑅 ↾ V) | |
| 2 | ssttrcl 9668 | . . . . 5 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) |
| 4 | coss1 5819 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
| 6 | ttrcltr 9669 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
| 7 | 5, 6 | sstri 3956 | . 2 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
| 8 | ssv 3971 | . . . 4 ⊢ ran t++(𝑅 ↾ V) ⊆ V | |
| 9 | cores 6222 | . . . 4 ⊢ (ran t++(𝑅 ↾ V) ⊆ V → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V))) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V)) |
| 11 | ttrclresv 9670 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
| 12 | 11 | coeq2i 5824 | . . 3 ⊢ (𝑅 ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅) |
| 13 | 10, 12 | eqtri 2752 | . 2 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅) |
| 14 | 7, 13, 11 | 3sstr3i 3997 | 1 ⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ⊆ wss 3914 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 t++cttrcl 9660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-ttrcl 9661 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |