MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cottrcl Structured version   Visualization version   GIF version

Theorem cottrcl 9736
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
cottrcl (𝑅 ∘ t++𝑅) ⊆ t++𝑅

Proof of Theorem cottrcl
StepHypRef Expression
1 relres 6008 . . . . 5 Rel (𝑅 ↾ V)
2 ssttrcl 9732 . . . . 5 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
31, 2ax-mp 5 . . . 4 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
4 coss1 5852 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
53, 4ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
6 ttrcltr 9733 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
75, 6sstri 3987 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
8 ssv 4002 . . . 4 ran t++(𝑅 ↾ V) ⊆ V
9 cores 6247 . . . 4 (ran t++(𝑅 ↾ V) ⊆ V → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V)))
108, 9ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V))
11 ttrclresv 9734 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq2i 5857 . . 3 (𝑅 ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
1310, 12eqtri 2756 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
147, 13, 113sstr3i 4020 1 (𝑅 ∘ t++𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  Vcvv 3470  wss 3945  ran crn 5673  cres 5674  ccom 5676  Rel wrel 5677  t++cttrcl 9724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-ttrcl 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator