![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cottrcl | Structured version Visualization version GIF version |
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
cottrcl | ⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6008 | . . . . 5 ⊢ Rel (𝑅 ↾ V) | |
2 | ssttrcl 9732 | . . . . 5 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) |
4 | coss1 5852 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
6 | ttrcltr 9733 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
7 | 5, 6 | sstri 3987 | . 2 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
8 | ssv 4002 | . . . 4 ⊢ ran t++(𝑅 ↾ V) ⊆ V | |
9 | cores 6247 | . . . 4 ⊢ (ran t++(𝑅 ↾ V) ⊆ V → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V)) |
11 | ttrclresv 9734 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
12 | 11 | coeq2i 5857 | . . 3 ⊢ (𝑅 ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅) |
13 | 10, 12 | eqtri 2756 | . 2 ⊢ ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅) |
14 | 7, 13, 11 | 3sstr3i 4020 | 1 ⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 Vcvv 3470 ⊆ wss 3945 ran crn 5673 ↾ cres 5674 ∘ ccom 5676 Rel wrel 5677 t++cttrcl 9724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-ttrcl 9725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |