MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cottrcl Structured version   Visualization version   GIF version

Theorem cottrcl 9788
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
cottrcl (𝑅 ∘ t++𝑅) ⊆ t++𝑅

Proof of Theorem cottrcl
StepHypRef Expression
1 relres 6035 . . . . 5 Rel (𝑅 ↾ V)
2 ssttrcl 9784 . . . . 5 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
31, 2ax-mp 5 . . . 4 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
4 coss1 5880 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
53, 4ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
6 ttrcltr 9785 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
75, 6sstri 4018 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
8 ssv 4033 . . . 4 ran t++(𝑅 ↾ V) ⊆ V
9 cores 6280 . . . 4 (ran t++(𝑅 ↾ V) ⊆ V → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V)))
108, 9ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V))
11 ttrclresv 9786 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq2i 5885 . . 3 (𝑅 ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
1310, 12eqtri 2768 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
147, 13, 113sstr3i 4051 1 (𝑅 ∘ t++𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  wss 3976  ran crn 5701  cres 5702  ccom 5704  Rel wrel 5705  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator