MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cottrcl Structured version   Visualization version   GIF version

Theorem cottrcl 9615
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
cottrcl (𝑅 ∘ t++𝑅) ⊆ t++𝑅

Proof of Theorem cottrcl
StepHypRef Expression
1 relres 5956 . . . . 5 Rel (𝑅 ↾ V)
2 ssttrcl 9611 . . . . 5 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
31, 2ax-mp 5 . . . 4 (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)
4 coss1 5798 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
53, 4ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
6 ttrcltr 9612 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
75, 6sstri 3945 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
8 ssv 3960 . . . 4 ran t++(𝑅 ↾ V) ⊆ V
9 cores 6198 . . . 4 (ran t++(𝑅 ↾ V) ⊆ V → ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V)))
108, 9ax-mp 5 . . 3 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++(𝑅 ↾ V))
11 ttrclresv 9613 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq2i 5803 . . 3 (𝑅 ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
1310, 12eqtri 2752 . 2 ((𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) = (𝑅 ∘ t++𝑅)
147, 13, 113sstr3i 3986 1 (𝑅 ∘ t++𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3436  wss 3903  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624  t++cttrcl 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-ttrcl 9604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator