MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccvol Structured version   Visualization version   GIF version

Theorem uniiccvol 25079
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25053.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccvol (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccvol
StepHypRef Expression
1 uniioombl.1 . . . 4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolficcss 24968 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
31, 2syl 17 . . 3 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
4 ovolcl 24977 . . 3 ( ran ([,] ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
6 eqid 2733 . . . . . . 7 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
7 uniioombl.3 . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
86, 7ovolsf 24971 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
91, 8syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
109frnd 6722 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
11 icossxr 13405 . . . 4 (0[,)+∞) ⊆ ℝ*
1210, 11sstrdi 3993 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
13 supxrcl 13290 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
1412, 13syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
15 ssid 4003 . . 3 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
167ovollb2 24988 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)) → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
171, 15, 16sylancl 587 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
18 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
191, 18, 7uniioovol 25078 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
20 ioossicc 13406 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ⊆ ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥)))
21 df-ov 7407 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
22 df-ov 7407 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2320, 21, 223sstr3i 4023 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2423a1i 11 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
25 ffvelcdm 7079 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
2625elin2d 4198 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
27 1st2nd2 8009 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2826, 27syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2928fveq2d 6892 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3028fveq2d 6892 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3124, 29, 303sstr4d 4028 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) ⊆ ([,]‘(𝐹𝑥)))
32 fvco3 6986 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
33 fvco3 6986 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3431, 32, 333sstr4d 4028 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
351, 34sylan 581 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
3635ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
37 ss2iun 5014 . . . . . 6 (∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
3836, 37syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
39 ioof 13420 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
40 ffn 6714 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4139, 40ax-mp 5 . . . . . . 7 (,) Fn (ℝ* × ℝ*)
42 inss2 4228 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
43 rexpssxrxp 11255 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4442, 43sstri 3990 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
45 fss 6731 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
461, 44, 45sylancl 587 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
47 fnfco 6753 . . . . . . 7 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
4841, 46, 47sylancr 588 . . . . . 6 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
49 fniunfv 7241 . . . . . 6 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5048, 49syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
51 iccf 13421 . . . . . . . 8 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
52 ffn 6714 . . . . . . . 8 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
5351, 52ax-mp 5 . . . . . . 7 [,] Fn (ℝ* × ℝ*)
54 fnfco 6753 . . . . . . 7 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
5553, 46, 54sylancr 588 . . . . . 6 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
56 fniunfv 7241 . . . . . 6 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5755, 56syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5838, 50, 573sstr3d 4027 . . . 4 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
59 ovolss 24984 . . . 4 (( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ ran ([,] ∘ 𝐹) ⊆ ℝ) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6058, 3, 59syl2anc 585 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6119, 60eqbrtrrd 5171 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
625, 14, 17, 61xrletrid 13130 1 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  cin 3946  wss 3947  𝒫 cpw 4601  cop 4633   cuni 4907   ciun 4996  Disj wdisj 5112   class class class wbr 5147   × cxp 5673  ran crn 5676  ccom 5679   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  1st c1st 7968  2nd c2nd 7969  supcsup 9431  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  cmin 11440  cn 12208  (,)cioo 13320  [,)cico 13322  [,]cicc 13323  seqcseq 13962  abscabs 15177  vol*covol 24961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-top 22378  df-topon 22395  df-bases 22431  df-cmp 22873  df-ovol 24963  df-vol 24964
This theorem is referenced by:  mblfinlem2  36464
  Copyright terms: Public domain W3C validator