MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccvol Structured version   Visualization version   GIF version

Theorem uniiccvol 24944
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 24918.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccvol (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccvol
StepHypRef Expression
1 uniioombl.1 . . . 4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolficcss 24833 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
31, 2syl 17 . . 3 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
4 ovolcl 24842 . . 3 ( ran ([,] ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
6 eqid 2736 . . . . . . 7 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
7 uniioombl.3 . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
86, 7ovolsf 24836 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
91, 8syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
109frnd 6676 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
11 icossxr 13349 . . . 4 (0[,)+∞) ⊆ ℝ*
1210, 11sstrdi 3956 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
13 supxrcl 13234 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
1412, 13syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
15 ssid 3966 . . 3 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
167ovollb2 24853 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)) → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
171, 15, 16sylancl 586 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
18 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
191, 18, 7uniioovol 24943 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
20 ioossicc 13350 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ⊆ ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥)))
21 df-ov 7360 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
22 df-ov 7360 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2320, 21, 223sstr3i 3986 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2423a1i 11 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
25 ffvelcdm 7032 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
2625elin2d 4159 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
27 1st2nd2 7960 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2826, 27syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2928fveq2d 6846 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3028fveq2d 6846 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3124, 29, 303sstr4d 3991 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) ⊆ ([,]‘(𝐹𝑥)))
32 fvco3 6940 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
33 fvco3 6940 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3431, 32, 333sstr4d 3991 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
351, 34sylan 580 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
3635ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
37 ss2iun 4972 . . . . . 6 (∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
3836, 37syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
39 ioof 13364 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
40 ffn 6668 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4139, 40ax-mp 5 . . . . . . 7 (,) Fn (ℝ* × ℝ*)
42 inss2 4189 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
43 rexpssxrxp 11200 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4442, 43sstri 3953 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
45 fss 6685 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
461, 44, 45sylancl 586 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
47 fnfco 6707 . . . . . . 7 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
4841, 46, 47sylancr 587 . . . . . 6 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
49 fniunfv 7194 . . . . . 6 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5048, 49syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
51 iccf 13365 . . . . . . . 8 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
52 ffn 6668 . . . . . . . 8 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
5351, 52ax-mp 5 . . . . . . 7 [,] Fn (ℝ* × ℝ*)
54 fnfco 6707 . . . . . . 7 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
5553, 46, 54sylancr 587 . . . . . 6 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
56 fniunfv 7194 . . . . . 6 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5755, 56syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5838, 50, 573sstr3d 3990 . . . 4 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
59 ovolss 24849 . . . 4 (( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ ran ([,] ∘ 𝐹) ⊆ ℝ) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6058, 3, 59syl2anc 584 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6119, 60eqbrtrrd 5129 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
625, 14, 17, 61xrletrid 13074 1 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  cin 3909  wss 3910  𝒫 cpw 4560  cop 4592   cuni 4865   ciun 4954  Disj wdisj 5070   class class class wbr 5105   × cxp 5631  ran crn 5634  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  (,)cioo 13264  [,)cico 13266  [,]cicc 13267  seqcseq 13906  abscabs 15119  vol*covol 24826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829
This theorem is referenced by:  mblfinlem2  36116
  Copyright terms: Public domain W3C validator