MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccvol Structured version   Visualization version   GIF version

Theorem uniiccvol 24335
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 24309.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccvol (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccvol
StepHypRef Expression
1 uniioombl.1 . . . 4 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ovolficcss 24224 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
31, 2syl 17 . . 3 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
4 ovolcl 24233 . . 3 ( ran ([,] ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
6 eqid 2739 . . . . . . 7 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
7 uniioombl.3 . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
86, 7ovolsf 24227 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
91, 8syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
109frnd 6513 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
11 icossxr 12909 . . . 4 (0[,)+∞) ⊆ ℝ*
1210, 11sstrdi 3890 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
13 supxrcl 12794 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
1412, 13syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
15 ssid 3900 . . 3 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
167ovollb2 24244 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)) → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
171, 15, 16sylancl 589 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
18 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
191, 18, 7uniioovol 24334 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
20 ioossicc 12910 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ⊆ ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥)))
21 df-ov 7176 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
22 df-ov 7176 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2320, 21, 223sstr3i 3920 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2423a1i 11 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
25 ffvelrn 6862 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
2625elin2d 4090 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
27 1st2nd2 7756 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2826, 27syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
2928fveq2d 6681 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3028fveq2d 6681 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
3124, 29, 303sstr4d 3925 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) ⊆ ([,]‘(𝐹𝑥)))
32 fvco3 6770 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
33 fvco3 6770 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3431, 32, 333sstr4d 3925 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
351, 34sylan 583 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
3635ralrimiva 3097 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
37 ss2iun 4900 . . . . . 6 (∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
3836, 37syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
39 ioof 12924 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
40 ffn 6505 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
4139, 40ax-mp 5 . . . . . . 7 (,) Fn (ℝ* × ℝ*)
42 inss2 4121 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
43 rexpssxrxp 10767 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4442, 43sstri 3887 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
45 fss 6522 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
461, 44, 45sylancl 589 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
47 fnfco 6544 . . . . . . 7 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
4841, 46, 47sylancr 590 . . . . . 6 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
49 fniunfv 7020 . . . . . 6 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5048, 49syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
51 iccf 12925 . . . . . . . 8 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
52 ffn 6505 . . . . . . . 8 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
5351, 52ax-mp 5 . . . . . . 7 [,] Fn (ℝ* × ℝ*)
54 fnfco 6544 . . . . . . 7 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
5553, 46, 54sylancr 590 . . . . . 6 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
56 fniunfv 7020 . . . . . 6 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5755, 56syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
5838, 50, 573sstr3d 3924 . . . 4 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
59 ovolss 24240 . . . 4 (( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ ran ([,] ∘ 𝐹) ⊆ ℝ) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6058, 3, 59syl2anc 587 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
6119, 60eqbrtrrd 5055 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
625, 14, 17, 61xrletrid 12634 1 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3054  cin 3843  wss 3844  𝒫 cpw 4489  cop 4523   cuni 4797   ciun 4882  Disj wdisj 4996   class class class wbr 5031   × cxp 5524  ran crn 5527  ccom 5530   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7173  1st c1st 7715  2nd c2nd 7716  supcsup 8980  cr 10617  0cc0 10618  1c1 10619   + caddc 10621  +∞cpnf 10753  *cxr 10755   < clt 10756  cle 10757  cmin 10951  cn 11719  (,)cioo 12824  [,)cico 12826  [,]cicc 12827  seqcseq 13463  abscabs 14686  vol*covol 24217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-disj 4997  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-pm 8443  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-z 12066  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-clim 14938  df-rlim 14939  df-sum 15139  df-rest 16802  df-topgen 16823  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-top 21648  df-topon 21665  df-bases 21700  df-cmp 22141  df-ovol 24219  df-vol 24220
This theorem is referenced by:  mblfinlem2  35461
  Copyright terms: Public domain W3C validator