Proof of Theorem uniiccvol
Step | Hyp | Ref
| Expression |
1 | | uniioombl.1 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
2 | | ssid 3848 |
. . 3
⊢ ∪ ran ([,] ∘ 𝐹) ⊆ ∪ ran
([,] ∘ 𝐹) |
3 | | uniioombl.3 |
. . . 4
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
4 | 3 | ovollb2 23655 |
. . 3
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ([,] ∘
𝐹) ⊆ ∪ ran ([,] ∘ 𝐹)) → (vol*‘∪ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, <
)) |
5 | 1, 2, 4 | sylancl 582 |
. 2
⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, <
)) |
6 | | uniioombl.2 |
. . . 4
⊢ (𝜑 → Disj 𝑥 ∈ ℕ
((,)‘(𝐹‘𝑥))) |
7 | 1, 6, 3 | uniioovol 23745 |
. . 3
⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, <
)) |
8 | | ioossicc 12547 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥))) ⊆ ((1st ‘(𝐹‘𝑥))[,](2nd ‘(𝐹‘𝑥))) |
9 | | df-ov 6908 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥))) = ((,)‘〈(1st
‘(𝐹‘𝑥)), (2nd
‘(𝐹‘𝑥))〉) |
10 | | df-ov 6908 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝐹‘𝑥))[,](2nd ‘(𝐹‘𝑥))) = ([,]‘〈(1st
‘(𝐹‘𝑥)), (2nd
‘(𝐹‘𝑥))〉) |
11 | 8, 9, 10 | 3sstr3i 3868 |
. . . . . . . . . . 11
⊢
((,)‘〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉) ⊆
([,]‘〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉) |
12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) →
((,)‘〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉) ⊆
([,]‘〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉)) |
13 | | inss2 4058 |
. . . . . . . . . . . . 13
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
14 | | ffvelrn 6606 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
15 | 13, 14 | sseldi 3825 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) ∈ (ℝ ×
ℝ)) |
16 | | 1st2nd2 7467 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) →
(𝐹‘𝑥) = 〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹‘𝑥) = 〈(1st ‘(𝐹‘𝑥)), (2nd ‘(𝐹‘𝑥))〉) |
18 | 17 | fveq2d 6437 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹‘𝑥)) = ((,)‘〈(1st
‘(𝐹‘𝑥)), (2nd
‘(𝐹‘𝑥))〉)) |
19 | 17 | fveq2d 6437 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ([,]‘(𝐹‘𝑥)) = ([,]‘〈(1st
‘(𝐹‘𝑥)), (2nd
‘(𝐹‘𝑥))〉)) |
20 | 12, 18, 19 | 3sstr4d 3873 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹‘𝑥)) ⊆ ([,]‘(𝐹‘𝑥))) |
21 | | fvco3 6522 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹‘𝑥))) |
22 | | fvco3 6522 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹‘𝑥))) |
23 | 20, 21, 22 | 3sstr4d 3873 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥)) |
24 | 1, 23 | sylan 577 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥)) |
25 | 24 | ralrimiva 3175 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥)) |
26 | | ss2iun 4756 |
. . . . . 6
⊢
(∀𝑥 ∈
ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥) → ∪
𝑥 ∈ ℕ (((,)
∘ 𝐹)‘𝑥) ⊆ ∪ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥)) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ ∪
𝑥 ∈ ℕ (([,]
∘ 𝐹)‘𝑥)) |
28 | | ioof 12560 |
. . . . . . . 8
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
29 | | ffn 6278 |
. . . . . . . 8
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → (,) Fn (ℝ* ×
ℝ*)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . 7
⊢ (,) Fn
(ℝ* × ℝ*) |
31 | | rexpssxrxp 10401 |
. . . . . . . . 9
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
32 | 13, 31 | sstri 3836 |
. . . . . . . 8
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
33 | | fss 6291 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
34 | 1, 32, 33 | sylancl 582 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
35 | | fnfco 6306 |
. . . . . . 7
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ((,) ∘ 𝐹) Fn ℕ) |
36 | 30, 34, 35 | sylancr 583 |
. . . . . 6
⊢ (𝜑 → ((,) ∘ 𝐹) Fn ℕ) |
37 | | fniunfv 6760 |
. . . . . 6
⊢ (((,)
∘ 𝐹) Fn ℕ
→ ∪ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ∪ ran ((,)
∘ 𝐹)) |
38 | 36, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ∪ ran ((,)
∘ 𝐹)) |
39 | | iccf 12561 |
. . . . . . . 8
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
40 | | ffn 6278 |
. . . . . . . 8
⊢
([,]:(ℝ* × ℝ*)⟶𝒫
ℝ* → [,] Fn (ℝ* ×
ℝ*)) |
41 | 39, 40 | ax-mp 5 |
. . . . . . 7
⊢ [,] Fn
(ℝ* × ℝ*) |
42 | | fnfco 6306 |
. . . . . . 7
⊢ (([,] Fn
(ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ([,] ∘ 𝐹) Fn ℕ) |
43 | 41, 34, 42 | sylancr 583 |
. . . . . 6
⊢ (𝜑 → ([,] ∘ 𝐹) Fn ℕ) |
44 | | fniunfv 6760 |
. . . . . 6
⊢ (([,]
∘ 𝐹) Fn ℕ
→ ∪ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ∪ ran ([,]
∘ 𝐹)) |
45 | 43, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ∪ ran ([,]
∘ 𝐹)) |
46 | 27, 38, 45 | 3sstr3d 3872 |
. . . 4
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran
([,] ∘ 𝐹)) |
47 | | ovolficcss 23635 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ ran ([,] ∘
𝐹) ⊆
ℝ) |
48 | 1, 47 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) |
49 | | ovolss 23651 |
. . . 4
⊢ ((∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran
([,] ∘ 𝐹) ∧ ∪ ran ([,] ∘ 𝐹) ⊆ ℝ) → (vol*‘∪ ran ((,) ∘ 𝐹)) ≤ (vol*‘∪ ran ([,] ∘ 𝐹))) |
50 | 46, 48, 49 | syl2anc 581 |
. . 3
⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐹)) ≤ (vol*‘∪ ran ([,] ∘ 𝐹))) |
51 | 7, 50 | eqbrtrrd 4897 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤
(vol*‘∪ ran ([,] ∘ 𝐹))) |
52 | | ovolcl 23644 |
. . . 4
⊢ (∪ ran ([,] ∘ 𝐹) ⊆ ℝ → (vol*‘∪ ran ([,] ∘ 𝐹)) ∈
ℝ*) |
53 | 48, 52 | syl 17 |
. . 3
⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) ∈
ℝ*) |
54 | | eqid 2825 |
. . . . . . . 8
⊢ ((abs
∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) |
55 | 54, 3 | ovolsf 23638 |
. . . . . . 7
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
56 | 1, 55 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
57 | 56 | frnd 6285 |
. . . . 5
⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
58 | | icossxr 12546 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ* |
59 | 57, 58 | syl6ss 3839 |
. . . 4
⊢ (𝜑 → ran 𝑆 ⊆
ℝ*) |
60 | | supxrcl 12433 |
. . . 4
⊢ (ran
𝑆 ⊆
ℝ* → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
61 | 59, 60 | syl 17 |
. . 3
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈
ℝ*) |
62 | | xrletri3 12273 |
. . 3
⊢
(((vol*‘∪ ran ([,] ∘ 𝐹)) ∈ ℝ*
∧ sup(ran 𝑆,
ℝ*, < ) ∈ ℝ*) →
((vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔
((vol*‘∪ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran
𝑆, ℝ*,
< ) ≤ (vol*‘∪ ran ([,] ∘ 𝐹))))) |
63 | 53, 61, 62 | syl2anc 581 |
. 2
⊢ (𝜑 → ((vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔
((vol*‘∪ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran
𝑆, ℝ*,
< ) ≤ (vol*‘∪ ran ([,] ∘ 𝐹))))) |
64 | 5, 51, 63 | mpbir2and 706 |
1
⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, <
)) |