| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3996 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 3999 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: relopabiv 5786 rncoss 5942 imassrn 6045 rnin 6122 inimass 6131 f1ossf1o 7103 ssoprab2i 7503 omopthlem2 8627 1sdom2dom 9201 rankval4 9827 cardf2 9903 r0weon 9972 dcomex 10407 axdc2lem 10408 fpwwe2lem1 10591 canthwe 10611 recmulnq 10924 npex 10946 axresscn 11108 mpoaddf 11169 mpomulf 11170 trclublem 14968 bpoly4 16032 2strop 17206 odlem1 19472 gexlem1 19516 pzriprnglem4 21401 psrbagsn 21977 bwth 23304 2ndcctbss 23349 uniioombllem4 25494 uniioombllem5 25495 eff1olem 26464 birthdaylem1 26868 zssno 28276 nvss 30529 lediri 31473 lejdiri 31475 sshhococi 31482 mayetes3i 31665 disjxpin 32524 imadifxp 32537 constrextdg2 33746 sxbrsigalem5 34286 eulerpartlemmf 34373 kur14lem6 35205 cvmlift2lem12 35308 bj-xpcossxp 37184 bj-rrhatsscchat 37231 mblfinlem4 37661 lclkrs2 41541 areaquad 43212 corclrcl 43703 corcltrcl 43735 relopabVD 44897 ovolval5lem3 46659 uspgrlimlem4 47994 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |