| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 4005 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 4008 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: relopabiv 5799 rncoss 5955 imassrn 6058 rnin 6135 inimass 6144 f1ossf1o 7118 ssoprab2i 7518 omopthlem2 8672 1sdom2dom 9255 rankval4 9881 cardf2 9957 r0weon 10026 dcomex 10461 axdc2lem 10462 fpwwe2lem1 10645 canthwe 10665 recmulnq 10978 npex 11000 axresscn 11162 mpoaddf 11223 mpomulf 11224 trclublem 15014 bpoly4 16075 2strop 17250 odlem1 19516 gexlem1 19560 pzriprnglem4 21445 psrbagsn 22021 bwth 23348 2ndcctbss 23393 uniioombllem4 25539 uniioombllem5 25540 eff1olem 26509 birthdaylem1 26913 zssno 28321 nvss 30574 lediri 31518 lejdiri 31520 sshhococi 31527 mayetes3i 31710 disjxpin 32569 imadifxp 32582 constrextdg2 33783 sxbrsigalem5 34320 eulerpartlemmf 34407 kur14lem6 35233 cvmlift2lem12 35336 bj-xpcossxp 37207 bj-rrhatsscchat 37254 mblfinlem4 37684 lclkrs2 41559 areaquad 43240 corclrcl 43731 corcltrcl 43763 relopabVD 44925 ovolval5lem3 46683 uspgrlimlem4 48003 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |