| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3976 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 3979 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: relopabiv 5759 rncoss 5915 imassrn 6019 rnin 6093 inimass 6102 f1ossf1o 7061 ssoprab2i 7457 omopthlem2 8575 1sdom2dom 9138 rankval4 9760 cardf2 9836 r0weon 9903 dcomex 10338 axdc2lem 10339 fpwwe2lem1 10522 canthwe 10542 recmulnq 10855 npex 10877 axresscn 11039 mpoaddf 11100 mpomulf 11101 trclublem 14902 bpoly4 15966 2strop 17140 odlem1 19447 gexlem1 19491 pzriprnglem4 21421 psrbagsn 21998 bwth 23325 2ndcctbss 23370 uniioombllem4 25514 uniioombllem5 25515 eff1olem 26484 birthdaylem1 26888 zssno 28305 nvss 30573 lediri 31517 lejdiri 31519 sshhococi 31526 mayetes3i 31709 disjxpin 32568 imadifxp 32581 constrextdg2 33762 sxbrsigalem5 34301 eulerpartlemmf 34388 kur14lem6 35255 cvmlift2lem12 35358 bj-xpcossxp 37231 bj-rrhatsscchat 37278 mblfinlem4 37708 lclkrs2 41587 areaquad 43257 corclrcl 43748 corcltrcl 43780 relopabVD 44941 ovolval5lem3 46700 uspgrlimlem4 48030 setc1onsubc 49642 |
| Copyright terms: Public domain | W3C validator |