| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3982 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 3985 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: relopabiv 5763 rncoss 5918 imassrn 6022 rnin 6095 inimass 6104 f1ossf1o 7062 ssoprab2i 7460 omopthlem2 8578 1sdom2dom 9143 rankval4 9763 cardf2 9839 r0weon 9906 dcomex 10341 axdc2lem 10342 fpwwe2lem1 10525 canthwe 10545 recmulnq 10858 npex 10880 axresscn 11042 mpoaddf 11103 mpomulf 11104 trclublem 14902 bpoly4 15966 2strop 17140 odlem1 19414 gexlem1 19458 pzriprnglem4 21391 psrbagsn 21968 bwth 23295 2ndcctbss 23340 uniioombllem4 25485 uniioombllem5 25486 eff1olem 26455 birthdaylem1 26859 zssno 28274 nvss 30537 lediri 31481 lejdiri 31483 sshhococi 31490 mayetes3i 31673 disjxpin 32532 imadifxp 32545 constrextdg2 33716 sxbrsigalem5 34256 eulerpartlemmf 34343 kur14lem6 35184 cvmlift2lem12 35287 bj-xpcossxp 37163 bj-rrhatsscchat 37210 mblfinlem4 37640 lclkrs2 41519 areaquad 43189 corclrcl 43680 corcltrcl 43712 relopabVD 44874 ovolval5lem3 46635 uspgrlimlem4 47975 setc1onsubc 49587 |
| Copyright terms: Public domain | W3C validator |