![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4039 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: relopabiv 5844 rncoss 5998 imassrn 6100 rnin 6178 inimass 6186 f1ossf1o 7162 ssoprab2i 7561 omopthlem2 8716 1sdom2dom 9310 rankval4 9936 cardf2 10012 r0weon 10081 dcomex 10516 axdc2lem 10517 fpwwe2lem1 10700 canthwe 10720 recmulnq 11033 npex 11055 axresscn 11217 mpoaddf 11278 mpomulf 11279 trclublem 15044 bpoly4 16107 2strop1 17286 odlem1 19577 gexlem1 19621 pzriprnglem4 21518 psrbagsn 22110 bwth 23439 2ndcctbss 23484 uniioombllem4 25640 uniioombllem5 25641 eff1olem 26608 birthdaylem1 27012 zssno 28385 nvss 30625 lediri 31569 lejdiri 31571 sshhococi 31578 mayetes3i 31761 disjxpin 32610 imadifxp 32623 sxbrsigalem5 34253 eulerpartlemmf 34340 kur14lem6 35179 cvmlift2lem12 35282 bj-xpcossxp 37155 bj-rrhatsscchat 37202 mblfinlem4 37620 lclkrs2 41497 areaquad 43177 corclrcl 43669 corcltrcl 43701 relopabVD 44872 ovolval5lem3 46575 uspgrlimlem4 47815 |
Copyright terms: Public domain | W3C validator |