| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 3996 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: relopabiv 5783 rncoss 5939 imassrn 6042 rnin 6119 inimass 6128 f1ossf1o 7100 ssoprab2i 7500 omopthlem2 8624 1sdom2dom 9194 rankval4 9820 cardf2 9896 r0weon 9965 dcomex 10400 axdc2lem 10401 fpwwe2lem1 10584 canthwe 10604 recmulnq 10917 npex 10939 axresscn 11101 mpoaddf 11162 mpomulf 11163 trclublem 14961 bpoly4 16025 2strop 17199 odlem1 19465 gexlem1 19509 pzriprnglem4 21394 psrbagsn 21970 bwth 23297 2ndcctbss 23342 uniioombllem4 25487 uniioombllem5 25488 eff1olem 26457 birthdaylem1 26861 zssno 28269 nvss 30522 lediri 31466 lejdiri 31468 sshhococi 31475 mayetes3i 31658 disjxpin 32517 imadifxp 32530 constrextdg2 33739 sxbrsigalem5 34279 eulerpartlemmf 34366 kur14lem6 35198 cvmlift2lem12 35301 bj-xpcossxp 37177 bj-rrhatsscchat 37224 mblfinlem4 37654 lclkrs2 41534 areaquad 43205 corclrcl 43696 corcltrcl 43728 relopabVD 44890 ovolval5lem3 46652 uspgrlimlem4 47990 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |