![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4026 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 231 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: relopabiv 5833 rncoss 5989 imassrn 6091 rnin 6169 inimass 6177 f1ossf1o 7148 ssoprab2i 7544 omopthlem2 8697 1sdom2dom 9281 rankval4 9905 cardf2 9981 r0weon 10050 dcomex 10485 axdc2lem 10486 fpwwe2lem1 10669 canthwe 10689 recmulnq 11002 npex 11024 axresscn 11186 mpoaddf 11247 mpomulf 11248 trclublem 15031 bpoly4 16092 2strop1 17273 odlem1 19568 gexlem1 19612 pzriprnglem4 21513 psrbagsn 22105 bwth 23434 2ndcctbss 23479 uniioombllem4 25635 uniioombllem5 25636 eff1olem 26605 birthdaylem1 27009 zssno 28382 nvss 30622 lediri 31566 lejdiri 31568 sshhococi 31575 mayetes3i 31758 disjxpin 32608 imadifxp 32621 sxbrsigalem5 34270 eulerpartlemmf 34357 kur14lem6 35196 cvmlift2lem12 35299 bj-xpcossxp 37172 bj-rrhatsscchat 37219 mblfinlem4 37647 lclkrs2 41523 areaquad 43205 corclrcl 43697 corcltrcl 43729 relopabVD 44899 ovolval5lem3 46610 uspgrlimlem4 47894 |
Copyright terms: Public domain | W3C validator |