Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3951 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: relopabiv 5730 rncoss 5881 imassrn 5980 rnin 6050 inimass 6058 f1ossf1o 7000 ssoprab2i 7385 omopthlem2 8490 rankval4 9625 cardf2 9701 r0weon 9768 dcomex 10203 axdc2lem 10204 fpwwe2lem1 10387 canthwe 10407 recmulnq 10720 npex 10742 axresscn 10904 trclublem 14706 bpoly4 15769 2strop1 16940 odlem1 19143 gexlem1 19184 psrbagsn 21271 bwth 22561 2ndcctbss 22606 uniioombllem4 24750 uniioombllem5 24751 eff1olem 25704 birthdaylem1 26101 nvss 28955 lediri 29899 lejdiri 29901 sshhococi 29908 mayetes3i 30091 disjxpin 30927 imadifxp 30940 sxbrsigalem5 32255 eulerpartlemmf 32342 kur14lem6 33173 cvmlift2lem12 33276 bj-xpcossxp 35360 bj-rrhatsscchat 35407 mblfinlem4 35817 lclkrs2 39554 areaquad 41047 corclrcl 41315 corcltrcl 41347 relopabVD 42521 |
Copyright terms: Public domain | W3C validator |