![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4013 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: relopabiv 5821 rncoss 5972 imassrn 6071 rnin 6147 inimass 6155 f1ossf1o 7126 ssoprab2i 7519 omopthlem2 8659 1sdom2dom 9247 rankval4 9862 cardf2 9938 r0weon 10007 dcomex 10442 axdc2lem 10443 fpwwe2lem1 10626 canthwe 10646 recmulnq 10959 npex 10981 axresscn 11143 trclublem 14942 bpoly4 16003 2strop1 17172 odlem1 19403 gexlem1 19447 psrbagsn 21624 bwth 22914 2ndcctbss 22959 uniioombllem4 25103 uniioombllem5 25104 eff1olem 26057 birthdaylem1 26456 nvss 29846 lediri 30790 lejdiri 30792 sshhococi 30799 mayetes3i 30982 disjxpin 31819 imadifxp 31832 sxbrsigalem5 33287 eulerpartlemmf 33374 kur14lem6 34202 cvmlift2lem12 34305 mpomulf 35159 bj-xpcossxp 36070 bj-rrhatsscchat 36117 mblfinlem4 36528 lclkrs2 40411 areaquad 41965 corclrcl 42458 corcltrcl 42490 relopabVD 43662 ovolval5lem3 45370 pzriprnglem4 46808 |
Copyright terms: Public domain | W3C validator |