![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4007 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 |
This theorem is referenced by: relopabiv 5813 rncoss 5964 imassrn 6063 rnin 6139 inimass 6147 f1ossf1o 7121 ssoprab2i 7514 omopthlem2 8658 1sdom2dom 9246 rankval4 9861 cardf2 9937 r0weon 10006 dcomex 10441 axdc2lem 10442 fpwwe2lem1 10625 canthwe 10645 recmulnq 10958 npex 10980 axresscn 11142 mpoaddf 11203 mpomulf 11204 trclublem 14945 bpoly4 16006 2strop1 17178 odlem1 19452 gexlem1 19496 pzriprnglem4 21366 psrbagsn 21961 bwth 23264 2ndcctbss 23309 uniioombllem4 25465 uniioombllem5 25466 eff1olem 26432 birthdaylem1 26833 nvss 30350 lediri 31294 lejdiri 31296 sshhococi 31303 mayetes3i 31486 disjxpin 32323 imadifxp 32336 sxbrsigalem5 33816 eulerpartlemmf 33903 kur14lem6 34729 cvmlift2lem12 34832 bj-xpcossxp 36576 bj-rrhatsscchat 36623 mblfinlem4 37040 lclkrs2 40923 areaquad 42523 corclrcl 43016 corcltrcl 43048 relopabVD 44220 ovolval5lem3 45924 |
Copyright terms: Public domain | W3C validator |