![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4004 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 |
This theorem is referenced by: relopabiv 5810 rncoss 5961 imassrn 6060 rnin 6136 inimass 6144 f1ossf1o 7118 ssoprab2i 7511 omopthlem2 8654 1sdom2dom 9242 rankval4 9857 cardf2 9933 r0weon 10002 dcomex 10437 axdc2lem 10438 fpwwe2lem1 10621 canthwe 10641 recmulnq 10954 npex 10976 axresscn 11138 mpomulf 11199 trclublem 14938 bpoly4 15999 2strop1 17168 odlem1 19440 gexlem1 19484 pzriprnglem4 21334 psrbagsn 21925 bwth 23224 2ndcctbss 23269 uniioombllem4 25425 uniioombllem5 25426 eff1olem 26387 birthdaylem1 26787 nvss 30270 lediri 31214 lejdiri 31216 sshhococi 31223 mayetes3i 31406 disjxpin 32243 imadifxp 32256 sxbrsigalem5 33742 eulerpartlemmf 33829 kur14lem6 34657 cvmlift2lem12 34760 mpoaddf 35624 bj-xpcossxp 36526 bj-rrhatsscchat 36573 mblfinlem4 36984 lclkrs2 40867 areaquad 42420 corclrcl 42913 corcltrcl 42945 relopabVD 44117 ovolval5lem3 45821 |
Copyright terms: Public domain | W3C validator |