| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 2 | 3sstr4.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
| 3 | 1, 2 | eqsstri 3990 | . 2 ⊢ 𝐶 ⊆ 𝐵 |
| 4 | 3sstr4.3 | . 2 ⊢ 𝐷 = 𝐵 | |
| 5 | 3, 4 | sseqtrri 3993 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: relopabiv 5774 rncoss 5928 imassrn 6031 rnin 6107 inimass 6116 f1ossf1o 7082 ssoprab2i 7480 omopthlem2 8601 1sdom2dom 9170 rankval4 9796 cardf2 9872 r0weon 9941 dcomex 10376 axdc2lem 10377 fpwwe2lem1 10560 canthwe 10580 recmulnq 10893 npex 10915 axresscn 11077 mpoaddf 11138 mpomulf 11139 trclublem 14937 bpoly4 16001 2strop 17175 odlem1 19441 gexlem1 19485 pzriprnglem4 21370 psrbagsn 21946 bwth 23273 2ndcctbss 23318 uniioombllem4 25463 uniioombllem5 25464 eff1olem 26433 birthdaylem1 26837 zssno 28245 nvss 30495 lediri 31439 lejdiri 31441 sshhococi 31448 mayetes3i 31631 disjxpin 32490 imadifxp 32503 constrextdg2 33712 sxbrsigalem5 34252 eulerpartlemmf 34339 kur14lem6 35171 cvmlift2lem12 35274 bj-xpcossxp 37150 bj-rrhatsscchat 37197 mblfinlem4 37627 lclkrs2 41507 areaquad 43178 corclrcl 43669 corcltrcl 43701 relopabVD 44863 ovolval5lem3 46625 uspgrlimlem4 47963 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |