Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3947 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: relopabiv 5719 rncoss 5870 imassrn 5969 rnin 6039 inimass 6047 f1ossf1o 6982 ssoprab2i 7363 omopthlem2 8450 rankval4 9556 cardf2 9632 r0weon 9699 dcomex 10134 axdc2lem 10135 fpwwe2lem1 10318 canthwe 10338 recmulnq 10651 npex 10673 axresscn 10835 trclublem 14634 bpoly4 15697 2strop1 16866 odlem1 19058 gexlem1 19099 psrbagsn 21181 bwth 22469 2ndcctbss 22514 uniioombllem4 24655 uniioombllem5 24656 eff1olem 25609 birthdaylem1 26006 nvss 28856 lediri 29800 lejdiri 29802 sshhococi 29809 mayetes3i 29992 disjxpin 30828 imadifxp 30841 sxbrsigalem5 32155 eulerpartlemmf 32242 kur14lem6 33073 cvmlift2lem12 33176 bj-xpcossxp 35287 bj-rrhatsscchat 35334 mblfinlem4 35744 lclkrs2 39481 areaquad 40963 corclrcl 41204 corcltrcl 41236 relopabVD 42410 |
Copyright terms: Public domain | W3C validator |