Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3sstr4i | Structured version Visualization version GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
3sstr4.2 | ⊢ 𝐶 = 𝐴 |
3sstr4.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 3961 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 230 | 1 ⊢ 𝐶 ⊆ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊆ wss 3897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3904 df-ss 3914 |
This theorem is referenced by: relopabiv 5756 rncoss 5907 imassrn 6004 rnin 6079 inimass 6087 f1ossf1o 7050 ssoprab2i 7439 omopthlem2 8553 1sdom2dom 9104 rankval4 9716 cardf2 9792 r0weon 9861 dcomex 10296 axdc2lem 10297 fpwwe2lem1 10480 canthwe 10500 recmulnq 10813 npex 10835 axresscn 10997 trclublem 14797 bpoly4 15860 2strop1 17029 odlem1 19231 gexlem1 19272 psrbagsn 21369 bwth 22659 2ndcctbss 22704 uniioombllem4 24848 uniioombllem5 24849 eff1olem 25802 birthdaylem1 26199 nvss 29156 lediri 30100 lejdiri 30102 sshhococi 30109 mayetes3i 30292 disjxpin 31127 imadifxp 31140 sxbrsigalem5 32468 eulerpartlemmf 32555 kur14lem6 33385 cvmlift2lem12 33488 bj-xpcossxp 35458 bj-rrhatsscchat 35505 mblfinlem4 35915 lclkrs2 39801 areaquad 41298 corclrcl 41625 corcltrcl 41657 relopabVD 42831 ovolval5lem3 44518 |
Copyright terms: Public domain | W3C validator |