MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Visualization version   GIF version

Theorem leordtval2 23129
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtval2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))

Proof of Theorem leordtval2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 18585 . . 3 ≤ ∈ TosetRel
2 ledm 18582 . . . 4 * = dom ≤
3 leordtval.1 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
43leordtvallem1 23127 . . . 4 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
5 leordtval.2 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
63, 5leordtvallem2 23128 . . . 4 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
72, 4, 6ordtval 23106 . . 3 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
81, 7ax-mp 5 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
9 snex 5433 . . . . 5 {ℝ*} ∈ V
10 xrex 13002 . . . . . . 7 * ∈ V
1110pwex 5380 . . . . . 6 𝒫 ℝ* ∈ V
12 eqid 2728 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
13 iocssxr 13441 . . . . . . . . . . . 12 (𝑥(,]+∞) ⊆ ℝ*
1410, 13elpwi2 5348 . . . . . . . . . . 11 (𝑥(,]+∞) ∈ 𝒫 ℝ*
1514a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥(,]+∞) ∈ 𝒫 ℝ*)
1612, 15fmpti 7122 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ*
17 frn 6729 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*)
1816, 17ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*
193, 18eqsstri 4014 . . . . . . 7 𝐴 ⊆ 𝒫 ℝ*
20 eqid 2728 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
21 icossxr 13442 . . . . . . . . . . . 12 (-∞[,)𝑥) ⊆ ℝ*
2210, 21elpwi2 5348 . . . . . . . . . . 11 (-∞[,)𝑥) ∈ 𝒫 ℝ*
2322a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-∞[,)𝑥) ∈ 𝒫 ℝ*)
2420, 23fmpti 7122 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ*
25 frn 6729 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*)
2624, 25ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*
275, 26eqsstri 4014 . . . . . . 7 𝐵 ⊆ 𝒫 ℝ*
2819, 27unssi 4185 . . . . . 6 (𝐴𝐵) ⊆ 𝒫 ℝ*
2911, 28ssexi 5322 . . . . 5 (𝐴𝐵) ∈ V
309, 29unex 7748 . . . 4 ({ℝ*} ∪ (𝐴𝐵)) ∈ V
31 ssun2 4173 . . . 4 (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))
32 fiss 9448 . . . 4 ((({ℝ*} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))))
3330, 31, 32mp2an 691 . . 3 (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵)))
34 fvex 6910 . . . . 5 (topGen‘(fi‘(𝐴𝐵))) ∈ V
35 ovex 7453 . . . . . . . . . 10 (0(,]+∞) ∈ V
36 ovex 7453 . . . . . . . . . 10 (-∞[,)1) ∈ V
3735, 36unipr 4925 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪ (-∞[,)1))
38 iocssxr 13441 . . . . . . . . . . 11 (0(,]+∞) ⊆ ℝ*
39 icossxr 13442 . . . . . . . . . . 11 (-∞[,)1) ⊆ ℝ*
4038, 39unssi 4185 . . . . . . . . . 10 ((0(,]+∞) ∪ (-∞[,)1)) ⊆ ℝ*
41 mnfxr 11302 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
42 0xr 11292 . . . . . . . . . . . . 13 0 ∈ ℝ*
43 pnfxr 11299 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
44 mnflt0 13138 . . . . . . . . . . . . . 14 -∞ < 0
45 0lepnf 13145 . . . . . . . . . . . . . 14 0 ≤ +∞
46 df-icc 13364 . . . . . . . . . . . . . . 15 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
47 df-ioc 13362 . . . . . . . . . . . . . . 15 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
48 xrltnle 11312 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑤 ∈ ℝ*) → (0 < 𝑤 ↔ ¬ 𝑤 ≤ 0))
49 xrletr 13170 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 ≤ +∞) → 𝑤 ≤ +∞))
50 xrlttr 13152 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤))
51 xrltle 13161 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
52513adant2 1129 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
5350, 52syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤))
5446, 47, 48, 46, 49, 53ixxun 13373 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5544, 45, 54mpanr12 704 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5641, 42, 43, 55mp3an 1458 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞)
57 1xr 11304 . . . . . . . . . . . . . 14 1 ∈ ℝ*
58 0lt1 11767 . . . . . . . . . . . . . 14 0 < 1
59 df-ico 13363 . . . . . . . . . . . . . . 15 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
60 xrlelttr 13168 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 < 1) → 𝑤 < 1))
6159, 46, 60ixxss2 13376 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆ (-∞[,)1))
6257, 58, 61mp2an 691 . . . . . . . . . . . . 13 (-∞[,]0) ⊆ (-∞[,)1)
63 unss1 4179 . . . . . . . . . . . . 13 ((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
6556, 64eqsstrri 4015 . . . . . . . . . . 11 (-∞[,]+∞) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
66 iccmax 13433 . . . . . . . . . . 11 (-∞[,]+∞) = ℝ*
67 uncom 4152 . . . . . . . . . . 11 ((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪ (-∞[,)1))
6865, 66, 673sstr3i 4022 . . . . . . . . . 10 * ⊆ ((0(,]+∞) ∪ (-∞[,)1))
6940, 68eqssi 3996 . . . . . . . . 9 ((0(,]+∞) ∪ (-∞[,)1)) = ℝ*
7037, 69eqtri 2756 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} = ℝ*
71 fvex 6910 . . . . . . . . 9 (fi‘(𝐴𝐵)) ∈ V
72 ssun1 4172 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
73 eqid 2728 . . . . . . . . . . . . . . 15 (0(,]+∞) = (0(,]+∞)
74 oveq1 7427 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥(,]+∞) = (0(,]+∞))
7574rspceeqv 3631 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) → ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7642, 73, 75mp2an 691 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞)
77 ovex 7453 . . . . . . . . . . . . . . 15 (𝑥(,]+∞) ∈ V
7812, 77elrnmpti 5962 . . . . . . . . . . . . . 14 ((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7976, 78mpbir 230 . . . . . . . . . . . . 13 (0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
8079, 3eleqtrri 2828 . . . . . . . . . . . 12 (0(,]+∞) ∈ 𝐴
8172, 80sselii 3977 . . . . . . . . . . 11 (0(,]+∞) ∈ (𝐴𝐵)
82 ssun2 4173 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
83 eqid 2728 . . . . . . . . . . . . . . 15 (-∞[,)1) = (-∞[,)1)
84 oveq2 7428 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (-∞[,)𝑥) = (-∞[,)1))
8584rspceeqv 3631 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) → ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8657, 83, 85mp2an 691 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥)
87 ovex 7453 . . . . . . . . . . . . . . 15 (-∞[,)𝑥) ∈ V
8820, 87elrnmpti 5962 . . . . . . . . . . . . . 14 ((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8986, 88mpbir 230 . . . . . . . . . . . . 13 (-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
9089, 5eleqtrri 2828 . . . . . . . . . . . 12 (-∞[,)1) ∈ 𝐵
9182, 90sselii 3977 . . . . . . . . . . 11 (-∞[,)1) ∈ (𝐴𝐵)
92 prssi 4825 . . . . . . . . . . 11 (((0(,]+∞) ∈ (𝐴𝐵) ∧ (-∞[,)1) ∈ (𝐴𝐵)) → {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵))
9381, 91, 92mp2an 691 . . . . . . . . . 10 {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵)
94 ssfii 9443 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9529, 94ax-mp 5 . . . . . . . . . 10 (𝐴𝐵) ⊆ (fi‘(𝐴𝐵))
9693, 95sstri 3989 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))
97 eltg3i 22877 . . . . . . . . 9 (((fi‘(𝐴𝐵)) ∈ V ∧ {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))) → {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵))))
9871, 96, 97mp2an 691 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵)))
9970, 98eqeltrri 2826 . . . . . . 7 * ∈ (topGen‘(fi‘(𝐴𝐵)))
100 snssi 4812 . . . . . . 7 (ℝ* ∈ (topGen‘(fi‘(𝐴𝐵))) → {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵))))
10199, 100ax-mp 5 . . . . . 6 {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵)))
102 bastg 22882 . . . . . . . 8 ((fi‘(𝐴𝐵)) ∈ V → (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵))))
10371, 102ax-mp 5 . . . . . . 7 (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
10495, 103sstri 3989 . . . . . 6 (𝐴𝐵) ⊆ (topGen‘(fi‘(𝐴𝐵)))
105101, 104unssi 4185 . . . . 5 ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
106 fiss 9448 . . . . 5 (((topGen‘(fi‘(𝐴𝐵))) ∈ V ∧ ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵)))))
10734, 105, 106mp2an 691 . . . 4 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵))))
108 fibas 22893 . . . . 5 (fi‘(𝐴𝐵)) ∈ TopBases
109 tgcl 22885 . . . . 5 ((fi‘(𝐴𝐵)) ∈ TopBases → (topGen‘(fi‘(𝐴𝐵))) ∈ Top)
110 fitop 22815 . . . . 5 ((topGen‘(fi‘(𝐴𝐵))) ∈ Top → (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵))))
111108, 109, 110mp2b 10 . . . 4 (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵)))
112107, 111sseqtri 4016 . . 3 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))
113 2basgen 22906 . . 3 (((fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))) ∧ (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
11433, 112, 113mp2an 691 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
1158, 114eqtr4i 2759 1 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3067  Vcvv 3471  cun 3945  wss 3947  𝒫 cpw 4603  {csn 4629  {cpr 4631   cuni 4908   class class class wbr 5148  cmpt 5231  ran crn 5679  wf 6544  cfv 6548  (class class class)co 7420  ficfi 9434  0cc0 11139  1c1 11140  +∞cpnf 11276  -∞cmnf 11277  *cxr 11278   < clt 11279  cle 11280  (,]cioc 13358  [,)cico 13359  [,]cicc 13360  topGenctg 17419  ordTopcordt 17481   TosetRel ctsr 18557  Topctop 22808  TopBasesctb 22861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9435  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-ioc 13362  df-ico 13363  df-icc 13364  df-topgen 17425  df-ordt 17483  df-ps 18558  df-tsr 18559  df-top 22809  df-bases 22862
This theorem is referenced by:  leordtval  23130  lecldbas  23136
  Copyright terms: Public domain W3C validator