MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Visualization version   GIF version

Theorem leordtval2 22372
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtval2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))

Proof of Theorem leordtval2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 18320 . . 3 ≤ ∈ TosetRel
2 ledm 18317 . . . 4 * = dom ≤
3 leordtval.1 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
43leordtvallem1 22370 . . . 4 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
5 leordtval.2 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
63, 5leordtvallem2 22371 . . . 4 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
72, 4, 6ordtval 22349 . . 3 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
81, 7ax-mp 5 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
9 snex 5355 . . . . 5 {ℝ*} ∈ V
10 xrex 12736 . . . . . . 7 * ∈ V
1110pwex 5304 . . . . . 6 𝒫 ℝ* ∈ V
12 eqid 2739 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
13 iocssxr 13172 . . . . . . . . . . . 12 (𝑥(,]+∞) ⊆ ℝ*
1410, 13elpwi2 5271 . . . . . . . . . . 11 (𝑥(,]+∞) ∈ 𝒫 ℝ*
1514a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥(,]+∞) ∈ 𝒫 ℝ*)
1612, 15fmpti 6995 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ*
17 frn 6616 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*)
1816, 17ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*
193, 18eqsstri 3956 . . . . . . 7 𝐴 ⊆ 𝒫 ℝ*
20 eqid 2739 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
21 icossxr 13173 . . . . . . . . . . . 12 (-∞[,)𝑥) ⊆ ℝ*
2210, 21elpwi2 5271 . . . . . . . . . . 11 (-∞[,)𝑥) ∈ 𝒫 ℝ*
2322a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-∞[,)𝑥) ∈ 𝒫 ℝ*)
2420, 23fmpti 6995 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ*
25 frn 6616 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*)
2624, 25ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*
275, 26eqsstri 3956 . . . . . . 7 𝐵 ⊆ 𝒫 ℝ*
2819, 27unssi 4120 . . . . . 6 (𝐴𝐵) ⊆ 𝒫 ℝ*
2911, 28ssexi 5247 . . . . 5 (𝐴𝐵) ∈ V
309, 29unex 7605 . . . 4 ({ℝ*} ∪ (𝐴𝐵)) ∈ V
31 ssun2 4108 . . . 4 (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))
32 fiss 9192 . . . 4 ((({ℝ*} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))))
3330, 31, 32mp2an 689 . . 3 (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵)))
34 fvex 6796 . . . . 5 (topGen‘(fi‘(𝐴𝐵))) ∈ V
35 ovex 7317 . . . . . . . . . 10 (0(,]+∞) ∈ V
36 ovex 7317 . . . . . . . . . 10 (-∞[,)1) ∈ V
3735, 36unipr 4858 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪ (-∞[,)1))
38 iocssxr 13172 . . . . . . . . . . 11 (0(,]+∞) ⊆ ℝ*
39 icossxr 13173 . . . . . . . . . . 11 (-∞[,)1) ⊆ ℝ*
4038, 39unssi 4120 . . . . . . . . . 10 ((0(,]+∞) ∪ (-∞[,)1)) ⊆ ℝ*
41 mnfxr 11041 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
42 0xr 11031 . . . . . . . . . . . . 13 0 ∈ ℝ*
43 pnfxr 11038 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
44 mnflt0 12870 . . . . . . . . . . . . . 14 -∞ < 0
45 0lepnf 12877 . . . . . . . . . . . . . 14 0 ≤ +∞
46 df-icc 13095 . . . . . . . . . . . . . . 15 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
47 df-ioc 13093 . . . . . . . . . . . . . . 15 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
48 xrltnle 11051 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑤 ∈ ℝ*) → (0 < 𝑤 ↔ ¬ 𝑤 ≤ 0))
49 xrletr 12901 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 ≤ +∞) → 𝑤 ≤ +∞))
50 xrlttr 12883 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤))
51 xrltle 12892 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
52513adant2 1130 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
5350, 52syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤))
5446, 47, 48, 46, 49, 53ixxun 13104 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5544, 45, 54mpanr12 702 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5641, 42, 43, 55mp3an 1460 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞)
57 1xr 11043 . . . . . . . . . . . . . 14 1 ∈ ℝ*
58 0lt1 11506 . . . . . . . . . . . . . 14 0 < 1
59 df-ico 13094 . . . . . . . . . . . . . . 15 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
60 xrlelttr 12899 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 < 1) → 𝑤 < 1))
6159, 46, 60ixxss2 13107 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆ (-∞[,)1))
6257, 58, 61mp2an 689 . . . . . . . . . . . . 13 (-∞[,]0) ⊆ (-∞[,)1)
63 unss1 4114 . . . . . . . . . . . . 13 ((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
6556, 64eqsstrri 3957 . . . . . . . . . . 11 (-∞[,]+∞) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
66 iccmax 13164 . . . . . . . . . . 11 (-∞[,]+∞) = ℝ*
67 uncom 4088 . . . . . . . . . . 11 ((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪ (-∞[,)1))
6865, 66, 673sstr3i 3964 . . . . . . . . . 10 * ⊆ ((0(,]+∞) ∪ (-∞[,)1))
6940, 68eqssi 3938 . . . . . . . . 9 ((0(,]+∞) ∪ (-∞[,)1)) = ℝ*
7037, 69eqtri 2767 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} = ℝ*
71 fvex 6796 . . . . . . . . 9 (fi‘(𝐴𝐵)) ∈ V
72 ssun1 4107 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
73 eqid 2739 . . . . . . . . . . . . . . 15 (0(,]+∞) = (0(,]+∞)
74 oveq1 7291 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥(,]+∞) = (0(,]+∞))
7574rspceeqv 3576 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) → ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7642, 73, 75mp2an 689 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞)
77 ovex 7317 . . . . . . . . . . . . . . 15 (𝑥(,]+∞) ∈ V
7812, 77elrnmpti 5872 . . . . . . . . . . . . . 14 ((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7976, 78mpbir 230 . . . . . . . . . . . . 13 (0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
8079, 3eleqtrri 2839 . . . . . . . . . . . 12 (0(,]+∞) ∈ 𝐴
8172, 80sselii 3919 . . . . . . . . . . 11 (0(,]+∞) ∈ (𝐴𝐵)
82 ssun2 4108 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
83 eqid 2739 . . . . . . . . . . . . . . 15 (-∞[,)1) = (-∞[,)1)
84 oveq2 7292 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (-∞[,)𝑥) = (-∞[,)1))
8584rspceeqv 3576 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) → ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8657, 83, 85mp2an 689 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥)
87 ovex 7317 . . . . . . . . . . . . . . 15 (-∞[,)𝑥) ∈ V
8820, 87elrnmpti 5872 . . . . . . . . . . . . . 14 ((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8986, 88mpbir 230 . . . . . . . . . . . . 13 (-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
9089, 5eleqtrri 2839 . . . . . . . . . . . 12 (-∞[,)1) ∈ 𝐵
9182, 90sselii 3919 . . . . . . . . . . 11 (-∞[,)1) ∈ (𝐴𝐵)
92 prssi 4755 . . . . . . . . . . 11 (((0(,]+∞) ∈ (𝐴𝐵) ∧ (-∞[,)1) ∈ (𝐴𝐵)) → {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵))
9381, 91, 92mp2an 689 . . . . . . . . . 10 {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵)
94 ssfii 9187 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9529, 94ax-mp 5 . . . . . . . . . 10 (𝐴𝐵) ⊆ (fi‘(𝐴𝐵))
9693, 95sstri 3931 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))
97 eltg3i 22120 . . . . . . . . 9 (((fi‘(𝐴𝐵)) ∈ V ∧ {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))) → {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵))))
9871, 96, 97mp2an 689 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵)))
9970, 98eqeltrri 2837 . . . . . . 7 * ∈ (topGen‘(fi‘(𝐴𝐵)))
100 snssi 4742 . . . . . . 7 (ℝ* ∈ (topGen‘(fi‘(𝐴𝐵))) → {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵))))
10199, 100ax-mp 5 . . . . . 6 {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵)))
102 bastg 22125 . . . . . . . 8 ((fi‘(𝐴𝐵)) ∈ V → (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵))))
10371, 102ax-mp 5 . . . . . . 7 (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
10495, 103sstri 3931 . . . . . 6 (𝐴𝐵) ⊆ (topGen‘(fi‘(𝐴𝐵)))
105101, 104unssi 4120 . . . . 5 ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
106 fiss 9192 . . . . 5 (((topGen‘(fi‘(𝐴𝐵))) ∈ V ∧ ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵)))))
10734, 105, 106mp2an 689 . . . 4 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵))))
108 fibas 22136 . . . . 5 (fi‘(𝐴𝐵)) ∈ TopBases
109 tgcl 22128 . . . . 5 ((fi‘(𝐴𝐵)) ∈ TopBases → (topGen‘(fi‘(𝐴𝐵))) ∈ Top)
110 fitop 22058 . . . . 5 ((topGen‘(fi‘(𝐴𝐵))) ∈ Top → (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵))))
111108, 109, 110mp2b 10 . . . 4 (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵)))
112107, 111sseqtri 3958 . . 3 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))
113 2basgen 22149 . . 3 (((fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))) ∧ (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
11433, 112, 113mp2an 689 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
1158, 114eqtr4i 2770 1 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2107  wrex 3066  Vcvv 3433  cun 3886  wss 3888  𝒫 cpw 4534  {csn 4562  {cpr 4564   cuni 4840   class class class wbr 5075  cmpt 5158  ran crn 5591  wf 6433  cfv 6437  (class class class)co 7284  ficfi 9178  0cc0 10880  1c1 10881  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  (,]cioc 13089  [,)cico 13090  [,]cicc 13091  topGenctg 17157  ordTopcordt 17219   TosetRel ctsr 18292  Topctop 22051  TopBasesctb 22104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fi 9179  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-ioc 13093  df-ico 13094  df-icc 13095  df-topgen 17163  df-ordt 17221  df-ps 18293  df-tsr 18294  df-top 22052  df-bases 22105
This theorem is referenced by:  leordtval  22373  lecldbas  22379
  Copyright terms: Public domain W3C validator