Step | Hyp | Ref
| Expression |
1 | | letsr 18490 |
. . 3
β’ β€
β TosetRel |
2 | | ledm 18487 |
. . . 4
β’
β* = dom β€ |
3 | | leordtval.1 |
. . . . 5
β’ π΄ = ran (π₯ β β* β¦ (π₯(,]+β)) |
4 | 3 | leordtvallem1 22584 |
. . . 4
β’ π΄ = ran (π₯ β β* β¦ {π¦ β β*
β£ Β¬ π¦ β€ π₯}) |
5 | | leordtval.2 |
. . . . 5
β’ π΅ = ran (π₯ β β* β¦
(-β[,)π₯)) |
6 | 3, 5 | leordtvallem2 22585 |
. . . 4
β’ π΅ = ran (π₯ β β* β¦ {π¦ β β*
β£ Β¬ π₯ β€ π¦}) |
7 | 2, 4, 6 | ordtval 22563 |
. . 3
β’ ( β€
β TosetRel β (ordTopβ β€ ) =
(topGenβ(fiβ({β*} βͺ (π΄ βͺ π΅))))) |
8 | 1, 7 | ax-mp 5 |
. 2
β’
(ordTopβ β€ ) = (topGenβ(fiβ({β*}
βͺ (π΄ βͺ π΅)))) |
9 | | snex 5392 |
. . . . 5
β’
{β*} β V |
10 | | xrex 12920 |
. . . . . . 7
β’
β* β V |
11 | 10 | pwex 5339 |
. . . . . 6
β’ π«
β* β V |
12 | | eqid 2733 |
. . . . . . . . . 10
β’ (π₯ β β*
β¦ (π₯(,]+β)) =
(π₯ β
β* β¦ (π₯(,]+β)) |
13 | | iocssxr 13357 |
. . . . . . . . . . . 12
β’ (π₯(,]+β) β
β* |
14 | 10, 13 | elpwi2 5307 |
. . . . . . . . . . 11
β’ (π₯(,]+β) β π«
β* |
15 | 14 | a1i 11 |
. . . . . . . . . 10
β’ (π₯ β β*
β (π₯(,]+β)
β π« β*) |
16 | 12, 15 | fmpti 7064 |
. . . . . . . . 9
β’ (π₯ β β*
β¦ (π₯(,]+β)):β*βΆπ«
β* |
17 | | frn 6679 |
. . . . . . . . 9
β’ ((π₯ β β*
β¦ (π₯(,]+β)):β*βΆπ«
β* β ran (π₯ β β* β¦ (π₯(,]+β)) β π«
β*) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
β’ ran
(π₯ β
β* β¦ (π₯(,]+β)) β π«
β* |
19 | 3, 18 | eqsstri 3982 |
. . . . . . 7
β’ π΄ β π«
β* |
20 | | eqid 2733 |
. . . . . . . . . 10
β’ (π₯ β β*
β¦ (-β[,)π₯)) =
(π₯ β
β* β¦ (-β[,)π₯)) |
21 | | icossxr 13358 |
. . . . . . . . . . . 12
β’
(-β[,)π₯)
β β* |
22 | 10, 21 | elpwi2 5307 |
. . . . . . . . . . 11
β’
(-β[,)π₯)
β π« β* |
23 | 22 | a1i 11 |
. . . . . . . . . 10
β’ (π₯ β β*
β (-β[,)π₯)
β π« β*) |
24 | 20, 23 | fmpti 7064 |
. . . . . . . . 9
β’ (π₯ β β*
β¦ (-β[,)π₯)):β*βΆπ«
β* |
25 | | frn 6679 |
. . . . . . . . 9
β’ ((π₯ β β*
β¦ (-β[,)π₯)):β*βΆπ«
β* β ran (π₯ β β* β¦
(-β[,)π₯)) β
π« β*) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . 8
β’ ran
(π₯ β
β* β¦ (-β[,)π₯)) β π«
β* |
27 | 5, 26 | eqsstri 3982 |
. . . . . . 7
β’ π΅ β π«
β* |
28 | 19, 27 | unssi 4149 |
. . . . . 6
β’ (π΄ βͺ π΅) β π«
β* |
29 | 11, 28 | ssexi 5283 |
. . . . 5
β’ (π΄ βͺ π΅) β V |
30 | 9, 29 | unex 7684 |
. . . 4
β’
({β*} βͺ (π΄ βͺ π΅)) β V |
31 | | ssun2 4137 |
. . . 4
β’ (π΄ βͺ π΅) β ({β*} βͺ
(π΄ βͺ π΅)) |
32 | | fiss 9368 |
. . . 4
β’
((({β*} βͺ (π΄ βͺ π΅)) β V β§ (π΄ βͺ π΅) β ({β*} βͺ
(π΄ βͺ π΅))) β (fiβ(π΄ βͺ π΅)) β (fiβ({β*}
βͺ (π΄ βͺ π΅)))) |
33 | 30, 31, 32 | mp2an 691 |
. . 3
β’
(fiβ(π΄ βͺ
π΅)) β
(fiβ({β*} βͺ (π΄ βͺ π΅))) |
34 | | fvex 6859 |
. . . . 5
β’
(topGenβ(fiβ(π΄ βͺ π΅))) β V |
35 | | ovex 7394 |
. . . . . . . . . 10
β’
(0(,]+β) β V |
36 | | ovex 7394 |
. . . . . . . . . 10
β’
(-β[,)1) β V |
37 | 35, 36 | unipr 4887 |
. . . . . . . . 9
β’ βͺ {(0(,]+β), (-β[,)1)} = ((0(,]+β) βͺ
(-β[,)1)) |
38 | | iocssxr 13357 |
. . . . . . . . . . 11
β’
(0(,]+β) β β* |
39 | | icossxr 13358 |
. . . . . . . . . . 11
β’
(-β[,)1) β β* |
40 | 38, 39 | unssi 4149 |
. . . . . . . . . 10
β’
((0(,]+β) βͺ (-β[,)1)) β
β* |
41 | | mnfxr 11220 |
. . . . . . . . . . . . 13
β’ -β
β β* |
42 | | 0xr 11210 |
. . . . . . . . . . . . 13
β’ 0 β
β* |
43 | | pnfxr 11217 |
. . . . . . . . . . . . 13
β’ +β
β β* |
44 | | mnflt0 13054 |
. . . . . . . . . . . . . 14
β’ -β
< 0 |
45 | | 0lepnf 13061 |
. . . . . . . . . . . . . 14
β’ 0 β€
+β |
46 | | df-icc 13280 |
. . . . . . . . . . . . . . 15
β’ [,] =
(π₯ β
β*, π¦
β β* β¦ {π§ β β* β£ (π₯ β€ π§ β§ π§ β€ π¦)}) |
47 | | df-ioc 13278 |
. . . . . . . . . . . . . . 15
β’ (,] =
(π₯ β
β*, π¦
β β* β¦ {π§ β β* β£ (π₯ < π§ β§ π§ β€ π¦)}) |
48 | | xrltnle 11230 |
. . . . . . . . . . . . . . 15
β’ ((0
β β* β§ π€ β β*) β (0 <
π€ β Β¬ π€ β€ 0)) |
49 | | xrletr 13086 |
. . . . . . . . . . . . . . 15
β’ ((π€ β β*
β§ 0 β β* β§ +β β β*)
β ((π€ β€ 0 β§ 0
β€ +β) β π€
β€ +β)) |
50 | | xrlttr 13068 |
. . . . . . . . . . . . . . . 16
β’
((-β β β* β§ 0 β β*
β§ π€ β
β*) β ((-β < 0 β§ 0 < π€) β -β < π€)) |
51 | | xrltle 13077 |
. . . . . . . . . . . . . . . . 17
β’
((-β β β* β§ π€ β β*) β (-β
< π€ β -β β€
π€)) |
52 | 51 | 3adant2 1132 |
. . . . . . . . . . . . . . . 16
β’
((-β β β* β§ 0 β β*
β§ π€ β
β*) β (-β < π€ β -β β€ π€)) |
53 | 50, 52 | syld 47 |
. . . . . . . . . . . . . . 15
β’
((-β β β* β§ 0 β β*
β§ π€ β
β*) β ((-β < 0 β§ 0 < π€) β -β β€ π€)) |
54 | 46, 47, 48, 46, 49, 53 | ixxun 13289 |
. . . . . . . . . . . . . 14
β’
(((-β β β* β§ 0 β
β* β§ +β β β*) β§ (-β
< 0 β§ 0 β€ +β)) β ((-β[,]0) βͺ (0(,]+β)) =
(-β[,]+β)) |
55 | 44, 45, 54 | mpanr12 704 |
. . . . . . . . . . . . 13
β’
((-β β β* β§ 0 β β*
β§ +β β β*) β ((-β[,]0) βͺ
(0(,]+β)) = (-β[,]+β)) |
56 | 41, 42, 43, 55 | mp3an 1462 |
. . . . . . . . . . . 12
β’
((-β[,]0) βͺ (0(,]+β)) =
(-β[,]+β) |
57 | | 1xr 11222 |
. . . . . . . . . . . . . 14
β’ 1 β
β* |
58 | | 0lt1 11685 |
. . . . . . . . . . . . . 14
β’ 0 <
1 |
59 | | df-ico 13279 |
. . . . . . . . . . . . . . 15
β’ [,) =
(π₯ β
β*, π¦
β β* β¦ {π§ β β* β£ (π₯ β€ π§ β§ π§ < π¦)}) |
60 | | xrlelttr 13084 |
. . . . . . . . . . . . . . 15
β’ ((π€ β β*
β§ 0 β β* β§ 1 β β*) β
((π€ β€ 0 β§ 0 < 1)
β π€ <
1)) |
61 | 59, 46, 60 | ixxss2 13292 |
. . . . . . . . . . . . . 14
β’ ((1
β β* β§ 0 < 1) β (-β[,]0) β
(-β[,)1)) |
62 | 57, 58, 61 | mp2an 691 |
. . . . . . . . . . . . 13
β’
(-β[,]0) β (-β[,)1) |
63 | | unss1 4143 |
. . . . . . . . . . . . 13
β’
((-β[,]0) β (-β[,)1) β ((-β[,]0) βͺ
(0(,]+β)) β ((-β[,)1) βͺ (0(,]+β))) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . 12
β’
((-β[,]0) βͺ (0(,]+β)) β ((-β[,)1) βͺ
(0(,]+β)) |
65 | 56, 64 | eqsstrri 3983 |
. . . . . . . . . . 11
β’
(-β[,]+β) β ((-β[,)1) βͺ
(0(,]+β)) |
66 | | iccmax 13349 |
. . . . . . . . . . 11
β’
(-β[,]+β) = β* |
67 | | uncom 4117 |
. . . . . . . . . . 11
β’
((-β[,)1) βͺ (0(,]+β)) = ((0(,]+β) βͺ
(-β[,)1)) |
68 | 65, 66, 67 | 3sstr3i 3990 |
. . . . . . . . . 10
β’
β* β ((0(,]+β) βͺ
(-β[,)1)) |
69 | 40, 68 | eqssi 3964 |
. . . . . . . . 9
β’
((0(,]+β) βͺ (-β[,)1)) =
β* |
70 | 37, 69 | eqtri 2761 |
. . . . . . . 8
β’ βͺ {(0(,]+β), (-β[,)1)} =
β* |
71 | | fvex 6859 |
. . . . . . . . 9
β’
(fiβ(π΄ βͺ
π΅)) β
V |
72 | | ssun1 4136 |
. . . . . . . . . . . 12
β’ π΄ β (π΄ βͺ π΅) |
73 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(0(,]+β) = (0(,]+β) |
74 | | oveq1 7368 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = 0 β (π₯(,]+β) =
(0(,]+β)) |
75 | 74 | rspceeqv 3599 |
. . . . . . . . . . . . . . 15
β’ ((0
β β* β§ (0(,]+β) = (0(,]+β)) β
βπ₯ β
β* (0(,]+β) = (π₯(,]+β)) |
76 | 42, 73, 75 | mp2an 691 |
. . . . . . . . . . . . . 14
β’
βπ₯ β
β* (0(,]+β) = (π₯(,]+β) |
77 | | ovex 7394 |
. . . . . . . . . . . . . . 15
β’ (π₯(,]+β) β
V |
78 | 12, 77 | elrnmpti 5919 |
. . . . . . . . . . . . . 14
β’
((0(,]+β) β ran (π₯ β β* β¦ (π₯(,]+β)) β
βπ₯ β
β* (0(,]+β) = (π₯(,]+β)) |
79 | 76, 78 | mpbir 230 |
. . . . . . . . . . . . 13
β’
(0(,]+β) β ran (π₯ β β* β¦ (π₯(,]+β)) |
80 | 79, 3 | eleqtrri 2833 |
. . . . . . . . . . . 12
β’
(0(,]+β) β π΄ |
81 | 72, 80 | sselii 3945 |
. . . . . . . . . . 11
β’
(0(,]+β) β (π΄ βͺ π΅) |
82 | | ssun2 4137 |
. . . . . . . . . . . 12
β’ π΅ β (π΄ βͺ π΅) |
83 | | eqid 2733 |
. . . . . . . . . . . . . . 15
β’
(-β[,)1) = (-β[,)1) |
84 | | oveq2 7369 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = 1 β (-β[,)π₯) =
(-β[,)1)) |
85 | 84 | rspceeqv 3599 |
. . . . . . . . . . . . . . 15
β’ ((1
β β* β§ (-β[,)1) = (-β[,)1)) β
βπ₯ β
β* (-β[,)1) = (-β[,)π₯)) |
86 | 57, 83, 85 | mp2an 691 |
. . . . . . . . . . . . . 14
β’
βπ₯ β
β* (-β[,)1) = (-β[,)π₯) |
87 | | ovex 7394 |
. . . . . . . . . . . . . . 15
β’
(-β[,)π₯)
β V |
88 | 20, 87 | elrnmpti 5919 |
. . . . . . . . . . . . . 14
β’
((-β[,)1) β ran (π₯ β β* β¦
(-β[,)π₯)) β
βπ₯ β
β* (-β[,)1) = (-β[,)π₯)) |
89 | 86, 88 | mpbir 230 |
. . . . . . . . . . . . 13
β’
(-β[,)1) β ran (π₯ β β* β¦
(-β[,)π₯)) |
90 | 89, 5 | eleqtrri 2833 |
. . . . . . . . . . . 12
β’
(-β[,)1) β π΅ |
91 | 82, 90 | sselii 3945 |
. . . . . . . . . . 11
β’
(-β[,)1) β (π΄ βͺ π΅) |
92 | | prssi 4785 |
. . . . . . . . . . 11
β’
(((0(,]+β) β (π΄ βͺ π΅) β§ (-β[,)1) β (π΄ βͺ π΅)) β {(0(,]+β), (-β[,)1)}
β (π΄ βͺ π΅)) |
93 | 81, 91, 92 | mp2an 691 |
. . . . . . . . . 10
β’
{(0(,]+β), (-β[,)1)} β (π΄ βͺ π΅) |
94 | | ssfii 9363 |
. . . . . . . . . . 11
β’ ((π΄ βͺ π΅) β V β (π΄ βͺ π΅) β (fiβ(π΄ βͺ π΅))) |
95 | 29, 94 | ax-mp 5 |
. . . . . . . . . 10
β’ (π΄ βͺ π΅) β (fiβ(π΄ βͺ π΅)) |
96 | 93, 95 | sstri 3957 |
. . . . . . . . 9
β’
{(0(,]+β), (-β[,)1)} β (fiβ(π΄ βͺ π΅)) |
97 | | eltg3i 22334 |
. . . . . . . . 9
β’
(((fiβ(π΄ βͺ
π΅)) β V β§
{(0(,]+β), (-β[,)1)} β (fiβ(π΄ βͺ π΅))) β βͺ
{(0(,]+β), (-β[,)1)} β (topGenβ(fiβ(π΄ βͺ π΅)))) |
98 | 71, 96, 97 | mp2an 691 |
. . . . . . . 8
β’ βͺ {(0(,]+β), (-β[,)1)} β
(topGenβ(fiβ(π΄
βͺ π΅))) |
99 | 70, 98 | eqeltrri 2831 |
. . . . . . 7
β’
β* β (topGenβ(fiβ(π΄ βͺ π΅))) |
100 | | snssi 4772 |
. . . . . . 7
β’
(β* β (topGenβ(fiβ(π΄ βͺ π΅))) β {β*} β
(topGenβ(fiβ(π΄
βͺ π΅)))) |
101 | 99, 100 | ax-mp 5 |
. . . . . 6
β’
{β*} β (topGenβ(fiβ(π΄ βͺ π΅))) |
102 | | bastg 22339 |
. . . . . . . 8
β’
((fiβ(π΄ βͺ
π΅)) β V β
(fiβ(π΄ βͺ π΅)) β
(topGenβ(fiβ(π΄
βͺ π΅)))) |
103 | 71, 102 | ax-mp 5 |
. . . . . . 7
β’
(fiβ(π΄ βͺ
π΅)) β
(topGenβ(fiβ(π΄
βͺ π΅))) |
104 | 95, 103 | sstri 3957 |
. . . . . 6
β’ (π΄ βͺ π΅) β (topGenβ(fiβ(π΄ βͺ π΅))) |
105 | 101, 104 | unssi 4149 |
. . . . 5
β’
({β*} βͺ (π΄ βͺ π΅)) β (topGenβ(fiβ(π΄ βͺ π΅))) |
106 | | fiss 9368 |
. . . . 5
β’
(((topGenβ(fiβ(π΄ βͺ π΅))) β V β§ ({β*}
βͺ (π΄ βͺ π΅)) β
(topGenβ(fiβ(π΄
βͺ π΅)))) β
(fiβ({β*} βͺ (π΄ βͺ π΅))) β
(fiβ(topGenβ(fiβ(π΄ βͺ π΅))))) |
107 | 34, 105, 106 | mp2an 691 |
. . . 4
β’
(fiβ({β*} βͺ (π΄ βͺ π΅))) β
(fiβ(topGenβ(fiβ(π΄ βͺ π΅)))) |
108 | | fibas 22350 |
. . . . 5
β’
(fiβ(π΄ βͺ
π΅)) β
TopBases |
109 | | tgcl 22342 |
. . . . 5
β’
((fiβ(π΄ βͺ
π΅)) β TopBases β
(topGenβ(fiβ(π΄
βͺ π΅))) β
Top) |
110 | | fitop 22272 |
. . . . 5
β’
((topGenβ(fiβ(π΄ βͺ π΅))) β Top β
(fiβ(topGenβ(fiβ(π΄ βͺ π΅)))) = (topGenβ(fiβ(π΄ βͺ π΅)))) |
111 | 108, 109,
110 | mp2b 10 |
. . . 4
β’
(fiβ(topGenβ(fiβ(π΄ βͺ π΅)))) = (topGenβ(fiβ(π΄ βͺ π΅))) |
112 | 107, 111 | sseqtri 3984 |
. . 3
β’
(fiβ({β*} βͺ (π΄ βͺ π΅))) β (topGenβ(fiβ(π΄ βͺ π΅))) |
113 | | 2basgen 22363 |
. . 3
β’
(((fiβ(π΄ βͺ
π΅)) β
(fiβ({β*} βͺ (π΄ βͺ π΅))) β§ (fiβ({β*}
βͺ (π΄ βͺ π΅))) β
(topGenβ(fiβ(π΄
βͺ π΅)))) β
(topGenβ(fiβ(π΄
βͺ π΅))) =
(topGenβ(fiβ({β*} βͺ (π΄ βͺ π΅))))) |
114 | 33, 112, 113 | mp2an 691 |
. 2
β’
(topGenβ(fiβ(π΄ βͺ π΅))) =
(topGenβ(fiβ({β*} βͺ (π΄ βͺ π΅)))) |
115 | 8, 114 | eqtr4i 2764 |
1
β’
(ordTopβ β€ ) = (topGenβ(fiβ(π΄ βͺ π΅))) |