MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Visualization version   GIF version

Theorem leordtval2 23148
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtval2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))

Proof of Theorem leordtval2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 18601 . . 3 ≤ ∈ TosetRel
2 ledm 18598 . . . 4 * = dom ≤
3 leordtval.1 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
43leordtvallem1 23146 . . . 4 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
5 leordtval.2 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
63, 5leordtvallem2 23147 . . . 4 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
72, 4, 6ordtval 23125 . . 3 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
81, 7ax-mp 5 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
9 snex 5406 . . . . 5 {ℝ*} ∈ V
10 xrex 13001 . . . . . . 7 * ∈ V
1110pwex 5350 . . . . . 6 𝒫 ℝ* ∈ V
12 eqid 2735 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
13 iocssxr 13446 . . . . . . . . . . . 12 (𝑥(,]+∞) ⊆ ℝ*
1410, 13elpwi2 5305 . . . . . . . . . . 11 (𝑥(,]+∞) ∈ 𝒫 ℝ*
1514a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥(,]+∞) ∈ 𝒫 ℝ*)
1612, 15fmpti 7101 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ*
17 frn 6712 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*)
1816, 17ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*
193, 18eqsstri 4005 . . . . . . 7 𝐴 ⊆ 𝒫 ℝ*
20 eqid 2735 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
21 icossxr 13447 . . . . . . . . . . . 12 (-∞[,)𝑥) ⊆ ℝ*
2210, 21elpwi2 5305 . . . . . . . . . . 11 (-∞[,)𝑥) ∈ 𝒫 ℝ*
2322a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-∞[,)𝑥) ∈ 𝒫 ℝ*)
2420, 23fmpti 7101 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ*
25 frn 6712 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*)
2624, 25ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*
275, 26eqsstri 4005 . . . . . . 7 𝐵 ⊆ 𝒫 ℝ*
2819, 27unssi 4166 . . . . . 6 (𝐴𝐵) ⊆ 𝒫 ℝ*
2911, 28ssexi 5292 . . . . 5 (𝐴𝐵) ∈ V
309, 29unex 7736 . . . 4 ({ℝ*} ∪ (𝐴𝐵)) ∈ V
31 ssun2 4154 . . . 4 (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))
32 fiss 9434 . . . 4 ((({ℝ*} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))))
3330, 31, 32mp2an 692 . . 3 (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵)))
34 fvex 6888 . . . . 5 (topGen‘(fi‘(𝐴𝐵))) ∈ V
35 ovex 7436 . . . . . . . . . 10 (0(,]+∞) ∈ V
36 ovex 7436 . . . . . . . . . 10 (-∞[,)1) ∈ V
3735, 36unipr 4900 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪ (-∞[,)1))
38 iocssxr 13446 . . . . . . . . . . 11 (0(,]+∞) ⊆ ℝ*
39 icossxr 13447 . . . . . . . . . . 11 (-∞[,)1) ⊆ ℝ*
4038, 39unssi 4166 . . . . . . . . . 10 ((0(,]+∞) ∪ (-∞[,)1)) ⊆ ℝ*
41 mnfxr 11290 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
42 0xr 11280 . . . . . . . . . . . . 13 0 ∈ ℝ*
43 pnfxr 11287 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
44 mnflt0 13139 . . . . . . . . . . . . . 14 -∞ < 0
45 0lepnf 13147 . . . . . . . . . . . . . 14 0 ≤ +∞
46 df-icc 13367 . . . . . . . . . . . . . . 15 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
47 df-ioc 13365 . . . . . . . . . . . . . . 15 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
48 xrltnle 11300 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑤 ∈ ℝ*) → (0 < 𝑤 ↔ ¬ 𝑤 ≤ 0))
49 xrletr 13172 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 ≤ +∞) → 𝑤 ≤ +∞))
50 xrlttr 13154 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤))
51 xrltle 13163 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
52513adant2 1131 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
5350, 52syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤))
5446, 47, 48, 46, 49, 53ixxun 13376 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5544, 45, 54mpanr12 705 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5641, 42, 43, 55mp3an 1463 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞)
57 1xr 11292 . . . . . . . . . . . . . 14 1 ∈ ℝ*
58 0lt1 11757 . . . . . . . . . . . . . 14 0 < 1
59 df-ico 13366 . . . . . . . . . . . . . . 15 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
60 xrlelttr 13170 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 < 1) → 𝑤 < 1))
6159, 46, 60ixxss2 13379 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆ (-∞[,)1))
6257, 58, 61mp2an 692 . . . . . . . . . . . . 13 (-∞[,]0) ⊆ (-∞[,)1)
63 unss1 4160 . . . . . . . . . . . . 13 ((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
6556, 64eqsstrri 4006 . . . . . . . . . . 11 (-∞[,]+∞) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
66 iccmax 13438 . . . . . . . . . . 11 (-∞[,]+∞) = ℝ*
67 uncom 4133 . . . . . . . . . . 11 ((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪ (-∞[,)1))
6865, 66, 673sstr3i 4009 . . . . . . . . . 10 * ⊆ ((0(,]+∞) ∪ (-∞[,)1))
6940, 68eqssi 3975 . . . . . . . . 9 ((0(,]+∞) ∪ (-∞[,)1)) = ℝ*
7037, 69eqtri 2758 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} = ℝ*
71 fvex 6888 . . . . . . . . 9 (fi‘(𝐴𝐵)) ∈ V
72 ssun1 4153 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
73 eqid 2735 . . . . . . . . . . . . . . 15 (0(,]+∞) = (0(,]+∞)
74 oveq1 7410 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥(,]+∞) = (0(,]+∞))
7574rspceeqv 3624 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) → ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7642, 73, 75mp2an 692 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞)
77 ovex 7436 . . . . . . . . . . . . . . 15 (𝑥(,]+∞) ∈ V
7812, 77elrnmpti 5942 . . . . . . . . . . . . . 14 ((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7976, 78mpbir 231 . . . . . . . . . . . . 13 (0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
8079, 3eleqtrri 2833 . . . . . . . . . . . 12 (0(,]+∞) ∈ 𝐴
8172, 80sselii 3955 . . . . . . . . . . 11 (0(,]+∞) ∈ (𝐴𝐵)
82 ssun2 4154 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
83 eqid 2735 . . . . . . . . . . . . . . 15 (-∞[,)1) = (-∞[,)1)
84 oveq2 7411 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (-∞[,)𝑥) = (-∞[,)1))
8584rspceeqv 3624 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) → ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8657, 83, 85mp2an 692 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥)
87 ovex 7436 . . . . . . . . . . . . . . 15 (-∞[,)𝑥) ∈ V
8820, 87elrnmpti 5942 . . . . . . . . . . . . . 14 ((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8986, 88mpbir 231 . . . . . . . . . . . . 13 (-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
9089, 5eleqtrri 2833 . . . . . . . . . . . 12 (-∞[,)1) ∈ 𝐵
9182, 90sselii 3955 . . . . . . . . . . 11 (-∞[,)1) ∈ (𝐴𝐵)
92 prssi 4797 . . . . . . . . . . 11 (((0(,]+∞) ∈ (𝐴𝐵) ∧ (-∞[,)1) ∈ (𝐴𝐵)) → {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵))
9381, 91, 92mp2an 692 . . . . . . . . . 10 {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵)
94 ssfii 9429 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9529, 94ax-mp 5 . . . . . . . . . 10 (𝐴𝐵) ⊆ (fi‘(𝐴𝐵))
9693, 95sstri 3968 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))
97 eltg3i 22897 . . . . . . . . 9 (((fi‘(𝐴𝐵)) ∈ V ∧ {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))) → {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵))))
9871, 96, 97mp2an 692 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵)))
9970, 98eqeltrri 2831 . . . . . . 7 * ∈ (topGen‘(fi‘(𝐴𝐵)))
100 snssi 4784 . . . . . . 7 (ℝ* ∈ (topGen‘(fi‘(𝐴𝐵))) → {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵))))
10199, 100ax-mp 5 . . . . . 6 {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵)))
102 bastg 22902 . . . . . . . 8 ((fi‘(𝐴𝐵)) ∈ V → (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵))))
10371, 102ax-mp 5 . . . . . . 7 (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
10495, 103sstri 3968 . . . . . 6 (𝐴𝐵) ⊆ (topGen‘(fi‘(𝐴𝐵)))
105101, 104unssi 4166 . . . . 5 ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
106 fiss 9434 . . . . 5 (((topGen‘(fi‘(𝐴𝐵))) ∈ V ∧ ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵)))))
10734, 105, 106mp2an 692 . . . 4 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵))))
108 fibas 22913 . . . . 5 (fi‘(𝐴𝐵)) ∈ TopBases
109 tgcl 22905 . . . . 5 ((fi‘(𝐴𝐵)) ∈ TopBases → (topGen‘(fi‘(𝐴𝐵))) ∈ Top)
110 fitop 22836 . . . . 5 ((topGen‘(fi‘(𝐴𝐵))) ∈ Top → (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵))))
111108, 109, 110mp2b 10 . . . 4 (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵)))
112107, 111sseqtri 4007 . . 3 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))
113 2basgen 22926 . . 3 (((fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))) ∧ (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
11433, 112, 113mp2an 692 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
1158, 114eqtr4i 2761 1 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  Vcvv 3459  cun 3924  wss 3926  𝒫 cpw 4575  {csn 4601  {cpr 4603   cuni 4883   class class class wbr 5119  cmpt 5201  ran crn 5655  wf 6526  cfv 6530  (class class class)co 7403  ficfi 9420  0cc0 11127  1c1 11128  +∞cpnf 11264  -∞cmnf 11265  *cxr 11266   < clt 11267  cle 11268  (,]cioc 13361  [,)cico 13362  [,]cicc 13363  topGenctg 17449  ordTopcordt 17511   TosetRel ctsr 18573  Topctop 22829  TopBasesctb 22881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-ioc 13365  df-ico 13366  df-icc 13367  df-topgen 17455  df-ordt 17513  df-ps 18574  df-tsr 18575  df-top 22830  df-bases 22882
This theorem is referenced by:  leordtval  23149  lecldbas  23155
  Copyright terms: Public domain W3C validator