MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Visualization version   GIF version

Theorem leordtval2 21817
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
leordtval.2 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
Assertion
Ref Expression
leordtval2 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))

Proof of Theorem leordtval2
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 17829 . . 3 ≤ ∈ TosetRel
2 ledm 17826 . . . 4 * = dom ≤
3 leordtval.1 . . . . 5 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
43leordtvallem1 21815 . . . 4 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦𝑥})
5 leordtval.2 . . . . 5 𝐵 = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
63, 5leordtvallem2 21816 . . . 4 𝐵 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑥𝑦})
72, 4, 6ordtval 21794 . . 3 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
81, 7ax-mp 5 . 2 (ordTop‘ ≤ ) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
9 snex 5297 . . . . 5 {ℝ*} ∈ V
10 xrex 12374 . . . . . . 7 * ∈ V
1110pwex 5246 . . . . . 6 𝒫 ℝ* ∈ V
12 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
13 iocssxr 12809 . . . . . . . . . . . 12 (𝑥(,]+∞) ⊆ ℝ*
1410, 13elpwi2 5213 . . . . . . . . . . 11 (𝑥(,]+∞) ∈ 𝒫 ℝ*
1514a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥(,]+∞) ∈ 𝒫 ℝ*)
1612, 15fmpti 6853 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ*
17 frn 6493 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*)
1816, 17ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ 𝒫 ℝ*
193, 18eqsstri 3949 . . . . . . 7 𝐴 ⊆ 𝒫 ℝ*
20 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
21 icossxr 12810 . . . . . . . . . . . 12 (-∞[,)𝑥) ⊆ ℝ*
2210, 21elpwi2 5213 . . . . . . . . . . 11 (-∞[,)𝑥) ∈ 𝒫 ℝ*
2322a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-∞[,)𝑥) ∈ 𝒫 ℝ*)
2420, 23fmpti 6853 . . . . . . . . 9 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ*
25 frn 6493 . . . . . . . . 9 ((𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)):ℝ*⟶𝒫 ℝ* → ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*)
2624, 25ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ⊆ 𝒫 ℝ*
275, 26eqsstri 3949 . . . . . . 7 𝐵 ⊆ 𝒫 ℝ*
2819, 27unssi 4112 . . . . . 6 (𝐴𝐵) ⊆ 𝒫 ℝ*
2911, 28ssexi 5190 . . . . 5 (𝐴𝐵) ∈ V
309, 29unex 7449 . . . 4 ({ℝ*} ∪ (𝐴𝐵)) ∈ V
31 ssun2 4100 . . . 4 (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))
32 fiss 8872 . . . 4 ((({ℝ*} ∪ (𝐴𝐵)) ∈ V ∧ (𝐴𝐵) ⊆ ({ℝ*} ∪ (𝐴𝐵))) → (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))))
3330, 31, 32mp2an 691 . . 3 (fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵)))
34 fvex 6658 . . . . 5 (topGen‘(fi‘(𝐴𝐵))) ∈ V
35 ovex 7168 . . . . . . . . . 10 (0(,]+∞) ∈ V
36 ovex 7168 . . . . . . . . . 10 (-∞[,)1) ∈ V
3735, 36unipr 4817 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} = ((0(,]+∞) ∪ (-∞[,)1))
38 iocssxr 12809 . . . . . . . . . . 11 (0(,]+∞) ⊆ ℝ*
39 icossxr 12810 . . . . . . . . . . 11 (-∞[,)1) ⊆ ℝ*
4038, 39unssi 4112 . . . . . . . . . 10 ((0(,]+∞) ∪ (-∞[,)1)) ⊆ ℝ*
41 mnfxr 10687 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
42 0xr 10677 . . . . . . . . . . . . 13 0 ∈ ℝ*
43 pnfxr 10684 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
44 mnflt0 12508 . . . . . . . . . . . . . 14 -∞ < 0
45 0lepnf 12515 . . . . . . . . . . . . . 14 0 ≤ +∞
46 df-icc 12733 . . . . . . . . . . . . . . 15 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
47 df-ioc 12731 . . . . . . . . . . . . . . 15 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
48 xrltnle 10697 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑤 ∈ ℝ*) → (0 < 𝑤 ↔ ¬ 𝑤 ≤ 0))
49 xrletr 12539 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 ≤ +∞) → 𝑤 ≤ +∞))
50 xrlttr 12521 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ < 𝑤))
51 xrltle 12530 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
52513adant2 1128 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → (-∞ < 𝑤 → -∞ ≤ 𝑤))
5350, 52syld 47 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 0 ∧ 0 < 𝑤) → -∞ ≤ 𝑤))
5446, 47, 48, 46, 49, 53ixxun 12742 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ 0 ≤ +∞)) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5544, 45, 54mpanr12 704 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞))
5641, 42, 43, 55mp3an 1458 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) = (-∞[,]+∞)
57 1xr 10689 . . . . . . . . . . . . . 14 1 ∈ ℝ*
58 0lt1 11151 . . . . . . . . . . . . . 14 0 < 1
59 df-ico 12732 . . . . . . . . . . . . . . 15 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
60 xrlelttr 12537 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑤 ≤ 0 ∧ 0 < 1) → 𝑤 < 1))
6159, 46, 60ixxss2 12745 . . . . . . . . . . . . . 14 ((1 ∈ ℝ* ∧ 0 < 1) → (-∞[,]0) ⊆ (-∞[,)1))
6257, 58, 61mp2an 691 . . . . . . . . . . . . 13 (-∞[,]0) ⊆ (-∞[,)1)
63 unss1 4106 . . . . . . . . . . . . 13 ((-∞[,]0) ⊆ (-∞[,)1) → ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞)))
6462, 63ax-mp 5 . . . . . . . . . . . 12 ((-∞[,]0) ∪ (0(,]+∞)) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
6556, 64eqsstrri 3950 . . . . . . . . . . 11 (-∞[,]+∞) ⊆ ((-∞[,)1) ∪ (0(,]+∞))
66 iccmax 12801 . . . . . . . . . . 11 (-∞[,]+∞) = ℝ*
67 uncom 4080 . . . . . . . . . . 11 ((-∞[,)1) ∪ (0(,]+∞)) = ((0(,]+∞) ∪ (-∞[,)1))
6865, 66, 673sstr3i 3957 . . . . . . . . . 10 * ⊆ ((0(,]+∞) ∪ (-∞[,)1))
6940, 68eqssi 3931 . . . . . . . . 9 ((0(,]+∞) ∪ (-∞[,)1)) = ℝ*
7037, 69eqtri 2821 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} = ℝ*
71 fvex 6658 . . . . . . . . 9 (fi‘(𝐴𝐵)) ∈ V
72 ssun1 4099 . . . . . . . . . . . 12 𝐴 ⊆ (𝐴𝐵)
73 eqid 2798 . . . . . . . . . . . . . . 15 (0(,]+∞) = (0(,]+∞)
74 oveq1 7142 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → (𝑥(,]+∞) = (0(,]+∞))
7574rspceeqv 3586 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (0(,]+∞) = (0(,]+∞)) → ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7642, 73, 75mp2an 691 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞)
77 ovex 7168 . . . . . . . . . . . . . . 15 (𝑥(,]+∞) ∈ V
7812, 77elrnmpti 5796 . . . . . . . . . . . . . 14 ((0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (0(,]+∞) = (𝑥(,]+∞))
7976, 78mpbir 234 . . . . . . . . . . . . 13 (0(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
8079, 3eleqtrri 2889 . . . . . . . . . . . 12 (0(,]+∞) ∈ 𝐴
8172, 80sselii 3912 . . . . . . . . . . 11 (0(,]+∞) ∈ (𝐴𝐵)
82 ssun2 4100 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴𝐵)
83 eqid 2798 . . . . . . . . . . . . . . 15 (-∞[,)1) = (-∞[,)1)
84 oveq2 7143 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (-∞[,)𝑥) = (-∞[,)1))
8584rspceeqv 3586 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ (-∞[,)1) = (-∞[,)1)) → ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8657, 83, 85mp2an 691 . . . . . . . . . . . . . 14 𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥)
87 ovex 7168 . . . . . . . . . . . . . . 15 (-∞[,)𝑥) ∈ V
8820, 87elrnmpti 5796 . . . . . . . . . . . . . 14 ((-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* (-∞[,)1) = (-∞[,)𝑥))
8986, 88mpbir 234 . . . . . . . . . . . . 13 (-∞[,)1) ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
9089, 5eleqtrri 2889 . . . . . . . . . . . 12 (-∞[,)1) ∈ 𝐵
9182, 90sselii 3912 . . . . . . . . . . 11 (-∞[,)1) ∈ (𝐴𝐵)
92 prssi 4714 . . . . . . . . . . 11 (((0(,]+∞) ∈ (𝐴𝐵) ∧ (-∞[,)1) ∈ (𝐴𝐵)) → {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵))
9381, 91, 92mp2an 691 . . . . . . . . . 10 {(0(,]+∞), (-∞[,)1)} ⊆ (𝐴𝐵)
94 ssfii 8867 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → (𝐴𝐵) ⊆ (fi‘(𝐴𝐵)))
9529, 94ax-mp 5 . . . . . . . . . 10 (𝐴𝐵) ⊆ (fi‘(𝐴𝐵))
9693, 95sstri 3924 . . . . . . . . 9 {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))
97 eltg3i 21566 . . . . . . . . 9 (((fi‘(𝐴𝐵)) ∈ V ∧ {(0(,]+∞), (-∞[,)1)} ⊆ (fi‘(𝐴𝐵))) → {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵))))
9871, 96, 97mp2an 691 . . . . . . . 8 {(0(,]+∞), (-∞[,)1)} ∈ (topGen‘(fi‘(𝐴𝐵)))
9970, 98eqeltrri 2887 . . . . . . 7 * ∈ (topGen‘(fi‘(𝐴𝐵)))
100 snssi 4701 . . . . . . 7 (ℝ* ∈ (topGen‘(fi‘(𝐴𝐵))) → {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵))))
10199, 100ax-mp 5 . . . . . 6 {ℝ*} ⊆ (topGen‘(fi‘(𝐴𝐵)))
102 bastg 21571 . . . . . . . 8 ((fi‘(𝐴𝐵)) ∈ V → (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵))))
10371, 102ax-mp 5 . . . . . . 7 (fi‘(𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
10495, 103sstri 3924 . . . . . 6 (𝐴𝐵) ⊆ (topGen‘(fi‘(𝐴𝐵)))
105101, 104unssi 4112 . . . . 5 ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))
106 fiss 8872 . . . . 5 (((topGen‘(fi‘(𝐴𝐵))) ∈ V ∧ ({ℝ*} ∪ (𝐴𝐵)) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵)))))
10734, 105, 106mp2an 691 . . . 4 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (fi‘(topGen‘(fi‘(𝐴𝐵))))
108 fibas 21582 . . . . 5 (fi‘(𝐴𝐵)) ∈ TopBases
109 tgcl 21574 . . . . 5 ((fi‘(𝐴𝐵)) ∈ TopBases → (topGen‘(fi‘(𝐴𝐵))) ∈ Top)
110 fitop 21505 . . . . 5 ((topGen‘(fi‘(𝐴𝐵))) ∈ Top → (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵))))
111108, 109, 110mp2b 10 . . . 4 (fi‘(topGen‘(fi‘(𝐴𝐵)))) = (topGen‘(fi‘(𝐴𝐵)))
112107, 111sseqtri 3951 . . 3 (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))
113 2basgen 21595 . . 3 (((fi‘(𝐴𝐵)) ⊆ (fi‘({ℝ*} ∪ (𝐴𝐵))) ∧ (fi‘({ℝ*} ∪ (𝐴𝐵))) ⊆ (topGen‘(fi‘(𝐴𝐵)))) → (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵)))))
11433, 112, 113mp2an 691 . 2 (topGen‘(fi‘(𝐴𝐵))) = (topGen‘(fi‘({ℝ*} ∪ (𝐴𝐵))))
1158, 114eqtr4i 2824 1 (ordTop‘ ≤ ) = (topGen‘(fi‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cun 3879  wss 3881  𝒫 cpw 4497  {csn 4525  {cpr 4527   cuni 4800   class class class wbr 5030  cmpt 5110  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  ficfi 8858  0cc0 10526  1c1 10527  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,]cioc 12727  [,)cico 12728  [,]cicc 12729  topGenctg 16703  ordTopcordt 16764   TosetRel ctsr 17801  Topctop 21498  TopBasesctb 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ioc 12731  df-ico 12732  df-icc 12733  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-top 21499  df-bases 21551
This theorem is referenced by:  leordtval  21818  lecldbas  21824
  Copyright terms: Public domain W3C validator