![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclco | Structured version Visualization version GIF version |
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclco | ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5970 | . . . 4 ⊢ Rel (𝑅 ↾ V) | |
2 | ssttrcl 9659 | . . . 4 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
3 | coss2 5816 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
5 | ttrcltr 9660 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
6 | 4, 5 | sstri 3957 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
7 | relco 6064 | . . . 4 ⊢ Rel (t++(𝑅 ↾ V) ∘ 𝑅) | |
8 | dfrel3 6154 | . . . 4 ⊢ (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅) |
10 | resco 6206 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) | |
11 | ttrclresv 9661 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
12 | 11 | coeq1i 5819 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅 ∘ 𝑅) |
13 | 9, 10, 12 | 3eqtr3i 2769 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅 ∘ 𝑅) |
14 | 6, 13, 11 | 3sstr3i 3990 | 1 ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 Vcvv 3447 ⊆ wss 3914 ↾ cres 5639 ∘ ccom 5641 Rel wrel 5642 t++cttrcl 9651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-oadd 8420 df-ttrcl 9652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |