| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttrclco | Structured version Visualization version GIF version | ||
| Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
| Ref | Expression |
|---|---|
| ttrclco | ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5956 | . . . 4 ⊢ Rel (𝑅 ↾ V) | |
| 2 | ssttrcl 9611 | . . . 4 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
| 3 | coss2 5799 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
| 4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
| 5 | ttrcltr 9612 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
| 6 | 4, 5 | sstri 3945 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
| 7 | relco 6059 | . . . 4 ⊢ Rel (t++(𝑅 ↾ V) ∘ 𝑅) | |
| 8 | dfrel3 6147 | . . . 4 ⊢ (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅) |
| 10 | resco 6199 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) | |
| 11 | ttrclresv 9613 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
| 12 | 11 | coeq1i 5802 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅 ∘ 𝑅) |
| 13 | 9, 10, 12 | 3eqtr3i 2760 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅 ∘ 𝑅) |
| 14 | 6, 13, 11 | 3sstr3i 3986 | 1 ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ⊆ wss 3903 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 t++cttrcl 9603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-ttrcl 9604 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |