![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttrclco | Structured version Visualization version GIF version |
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclco | ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6003 | . . . 4 ⊢ Rel (𝑅 ↾ V) | |
2 | ssttrcl 9709 | . . . 4 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
3 | coss2 5849 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
5 | ttrcltr 9710 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
6 | 4, 5 | sstri 3986 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
7 | relco 6100 | . . . 4 ⊢ Rel (t++(𝑅 ↾ V) ∘ 𝑅) | |
8 | dfrel3 6190 | . . . 4 ⊢ (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅) |
10 | resco 6242 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) | |
11 | ttrclresv 9711 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
12 | 11 | coeq1i 5852 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅 ∘ 𝑅) |
13 | 9, 10, 12 | 3eqtr3i 2762 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅 ∘ 𝑅) |
14 | 6, 13, 11 | 3sstr3i 4019 | 1 ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 Vcvv 3468 ⊆ wss 3943 ↾ cres 5671 ∘ ccom 5673 Rel wrel 5674 t++cttrcl 9701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-ttrcl 9702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |