MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclco Structured version   Visualization version   GIF version

Theorem ttrclco 9712
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclco (t++𝑅𝑅) ⊆ t++𝑅

Proof of Theorem ttrclco
StepHypRef Expression
1 relres 6003 . . . 4 Rel (𝑅 ↾ V)
2 ssttrcl 9709 . . . 4 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
3 coss2 5849 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
41, 2, 3mp2b 10 . . 3 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
5 ttrcltr 9710 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
64, 5sstri 3986 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
7 relco 6100 . . . 4 Rel (t++(𝑅 ↾ V) ∘ 𝑅)
8 dfrel3 6190 . . . 4 (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅))
97, 8mpbi 229 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)
10 resco 6242 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V))
11 ttrclresv 9711 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq1i 5852 . . 3 (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅𝑅)
139, 10, 123eqtr3i 2762 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅𝑅)
146, 13, 113sstr3i 4019 1 (t++𝑅𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3468  wss 3943  cres 5671  ccom 5673  Rel wrel 5674  t++cttrcl 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-oadd 8468  df-ttrcl 9702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator