Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttrclco | Structured version Visualization version GIF version |
Description: Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.) |
Ref | Expression |
---|---|
ttrclco | ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5920 | . . . 4 ⊢ Rel (𝑅 ↾ V) | |
2 | ssttrcl 9473 | . . . 4 ⊢ (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V)) | |
3 | coss2 5765 | . . . 4 ⊢ ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) |
5 | ttrcltr 9474 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) | |
6 | 4, 5 | sstri 3930 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V) |
7 | relco 6148 | . . . 4 ⊢ Rel (t++(𝑅 ↾ V) ∘ 𝑅) | |
8 | dfrel3 6101 | . . . 4 ⊢ (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅) |
10 | resco 6154 | . . 3 ⊢ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) | |
11 | ttrclresv 9475 | . . . 4 ⊢ t++(𝑅 ↾ V) = t++𝑅 | |
12 | 11 | coeq1i 5768 | . . 3 ⊢ (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅 ∘ 𝑅) |
13 | 9, 10, 12 | 3eqtr3i 2774 | . 2 ⊢ (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅 ∘ 𝑅) |
14 | 6, 13, 11 | 3sstr3i 3963 | 1 ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3432 ⊆ wss 3887 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 t++cttrcl 9465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-ttrcl 9466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |