MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclco Structured version   Visualization version   GIF version

Theorem ttrclco 9719
Description: Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclco (t++𝑅𝑅) ⊆ t++𝑅

Proof of Theorem ttrclco
StepHypRef Expression
1 relres 6010 . . . 4 Rel (𝑅 ↾ V)
2 ssttrcl 9716 . . . 4 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
3 coss2 5856 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
41, 2, 3mp2b 10 . . 3 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
5 ttrcltr 9717 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
64, 5sstri 3991 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
7 relco 6107 . . . 4 Rel (t++(𝑅 ↾ V) ∘ 𝑅)
8 dfrel3 6197 . . . 4 (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅))
97, 8mpbi 229 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)
10 resco 6249 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V))
11 ttrclresv 9718 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq1i 5859 . . 3 (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅𝑅)
139, 10, 123eqtr3i 2767 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅𝑅)
146, 13, 113sstr3i 4024 1 (t++𝑅𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3473  wss 3948  cres 5678  ccom 5680  Rel wrel 5681  t++cttrcl 9708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-oadd 8476  df-ttrcl 9709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator