MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclco Structured version   Visualization version   GIF version

Theorem ttrclco 9476
Description: Composition law for the transitive closure of a relationship. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclco (t++𝑅𝑅) ⊆ t++𝑅

Proof of Theorem ttrclco
StepHypRef Expression
1 relres 5920 . . . 4 Rel (𝑅 ↾ V)
2 ssttrcl 9473 . . . 4 (Rel (𝑅 ↾ V) → (𝑅 ↾ V) ⊆ t++(𝑅 ↾ V))
3 coss2 5765 . . . 4 ((𝑅 ↾ V) ⊆ t++(𝑅 ↾ V) → (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)))
41, 2, 3mp2b 10 . . 3 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V))
5 ttrcltr 9474 . . 3 (t++(𝑅 ↾ V) ∘ t++(𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
64, 5sstri 3930 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) ⊆ t++(𝑅 ↾ V)
7 relco 6148 . . . 4 Rel (t++(𝑅 ↾ V) ∘ 𝑅)
8 dfrel3 6101 . . . 4 (Rel (t++(𝑅 ↾ V) ∘ 𝑅) ↔ ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅))
97, 8mpbi 229 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ 𝑅)
10 resco 6154 . . 3 ((t++(𝑅 ↾ V) ∘ 𝑅) ↾ V) = (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V))
11 ttrclresv 9475 . . . 4 t++(𝑅 ↾ V) = t++𝑅
1211coeq1i 5768 . . 3 (t++(𝑅 ↾ V) ∘ 𝑅) = (t++𝑅𝑅)
139, 10, 123eqtr3i 2774 . 2 (t++(𝑅 ↾ V) ∘ (𝑅 ↾ V)) = (t++𝑅𝑅)
146, 13, 113sstr3i 3963 1 (t++𝑅𝑅) ⊆ t++𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3432  wss 3887  cres 5591  ccom 5593  Rel wrel 5594  t++cttrcl 9465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-ttrcl 9466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator