| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2716 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2880 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2708 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-nfc 2879 |
| This theorem is referenced by: nfabd2 2916 eqabf 2922 abid2fOLD 2924 nfrab1 3429 elabgf 3644 nfsbc1d 3774 ss2ab 4028 ab0ALT 4347 euabsn 4693 iunab 5018 iinab 5035 zfrep4 5251 rnep 5893 sniota 6505 opabiotafun 6944 nfixp1 8894 scottexs 9847 scott0s 9848 cp 9851 symgval 19308 ofpreima 32596 algextdeglem6 33719 qqhval2 33979 esum2dlem 34089 sigaclcu2 34117 bnj1366 34826 bnj1321 35024 bnj1384 35029 currysetlem 36940 currysetlem1 36942 bj-reabeq 37022 mptsnunlem 37333 topdifinffinlem 37342 scottabf 44236 compab 44438 permaxrep 45003 ssfiunibd 45314 absnsb 47032 setrec2lem2 49687 |
| Copyright terms: Public domain | W3C validator |