| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2717 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2882 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2709 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-nfc 2881 |
| This theorem is referenced by: nfabd2 2918 eqabf 2924 abid2fOLD 2926 nfrab1 3415 elabgf 3630 nfsbc1d 3759 ss2ab 4013 ab0ALT 4331 euabsn 4679 iunab 5000 iinab 5016 zfrep4 5231 rnep 5867 sniota 6472 opabiotafun 6902 nfixp1 8842 scottexs 9777 scott0s 9778 cp 9781 symgval 19281 ofpreima 32642 algextdeglem6 33730 qqhval2 33990 esum2dlem 34100 sigaclcu2 34128 bnj1366 34836 bnj1321 35034 bnj1384 35039 currysetlem 36978 currysetlem1 36980 bj-reabeq 37060 mptsnunlem 37371 topdifinffinlem 37380 scottabf 44272 compab 44473 permaxrep 45038 ssfiunibd 45349 absnsb 47057 setrec2lem2 49725 |
| Copyright terms: Public domain | W3C validator |