![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2725 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2896 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-nfc 2895 |
This theorem is referenced by: nfabd2 2935 eqabf 2941 abid2fOLD 2943 nfrab1 3464 elabgtOLDOLD 3687 elabgf 3688 elabgOLD 3691 nfsbc1d 3822 ss2ab 4085 ab0ALT 4404 euabsn 4751 iunab 5074 iinab 5091 zfrep4 5314 rnep 5951 sniota 6564 opabiotafun 7002 nfixp1 8976 scottexs 9956 scott0s 9957 cp 9960 symgval 19412 ofpreima 32683 algextdeglem6 33713 qqhval2 33928 esum2dlem 34056 sigaclcu2 34084 bnj1366 34805 bnj1321 35003 bnj1384 35008 currysetlem 36911 currysetlem1 36913 bj-reabeq 36993 mptsnunlem 37304 topdifinffinlem 37313 scottabf 44209 compab 44411 ssfiunibd 45224 absnsb 46942 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |