| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2715 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2879 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2707 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-nfc 2878 |
| This theorem is referenced by: nfabd2 2915 eqabf 2921 abid2fOLD 2923 nfrab1 3417 elabgf 3632 nfsbc1d 3762 ss2ab 4016 ab0ALT 4334 euabsn 4680 iunab 5003 iinab 5020 zfrep4 5235 rnep 5873 sniota 6477 opabiotafun 6907 nfixp1 8852 scottexs 9802 scott0s 9803 cp 9806 symgval 19268 ofpreima 32622 algextdeglem6 33688 qqhval2 33948 esum2dlem 34058 sigaclcu2 34086 bnj1366 34795 bnj1321 34993 bnj1384 34998 currysetlem 36918 currysetlem1 36920 bj-reabeq 37000 mptsnunlem 37311 topdifinffinlem 37320 scottabf 44213 compab 44415 permaxrep 44980 ssfiunibd 45291 absnsb 47012 setrec2lem2 49680 |
| Copyright terms: Public domain | W3C validator |