| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2719 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2883 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2711 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-nfc 2882 |
| This theorem is referenced by: nfabd2 2919 eqabf 2925 abid2fOLD 2927 nfrab1 3416 elabgf 3626 nfsbc1d 3755 ss2ab 4010 ab0ALT 4330 euabsn 4678 iunab 5002 iinab 5018 zfrep4 5233 rnep 5871 sniota 6477 opabiotafun 6908 nfixp1 8848 scottexs 9787 scott0s 9788 cp 9791 symgval 19285 ofpreima 32649 algextdeglem6 33756 qqhval2 34016 esum2dlem 34126 sigaclcu2 34154 bnj1366 34862 bnj1321 35060 bnj1384 35065 currysetlem 37010 currysetlem1 37012 bj-reabeq 37092 mptsnunlem 37403 topdifinffinlem 37412 scottabf 44357 compab 44558 permaxrep 45123 ssfiunibd 45434 absnsb 47151 setrec2lem2 49819 |
| Copyright terms: Public domain | W3C validator |