Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2723 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2889 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {cab 2715 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-nfc 2888 |
This theorem is referenced by: nfabd2 2932 abid2f 2938 abeq2f 2939 nfrab1 3310 elabgtOLD 3597 elabgf 3598 elabgOLD 3601 nfsbc1d 3729 ss2ab 3989 ab0ALT 4307 abn0OLD 4312 euabsn 4659 iunab 4977 iinab 4993 zfrep4 5215 rnep 5825 sniota 6409 opabiotafun 6831 nfixp1 8664 scottexs 9576 scott0s 9577 cp 9580 symgval 18891 ofpreima 30904 qqhval2 31832 esum2dlem 31960 sigaclcu2 31988 bnj1366 32709 bnj1321 32907 bnj1384 32912 currysetlem 35061 currysetlem1 35063 bj-reabeq 35144 mptsnunlem 35436 topdifinffinlem 35445 scottabf 41747 compab 41949 ssfiunibd 42738 absnsb 44408 setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |