| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2715 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2879 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2707 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-nfc 2878 |
| This theorem is referenced by: nfabd2 2915 eqabf 2921 abid2fOLD 2923 nfrab1 3426 elabgf 3641 nfsbc1d 3771 ss2ab 4025 ab0ALT 4344 euabsn 4690 iunab 5015 iinab 5032 zfrep4 5248 rnep 5890 sniota 6502 opabiotafun 6941 nfixp1 8891 scottexs 9840 scott0s 9841 cp 9844 symgval 19301 ofpreima 32589 algextdeglem6 33712 qqhval2 33972 esum2dlem 34082 sigaclcu2 34110 bnj1366 34819 bnj1321 35017 bnj1384 35022 currysetlem 36933 currysetlem1 36935 bj-reabeq 37015 mptsnunlem 37326 topdifinffinlem 37335 scottabf 44229 compab 44431 permaxrep 44996 ssfiunibd 45307 absnsb 47028 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |