Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2723 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2890 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {cab 2715 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-nfc 2889 |
This theorem is referenced by: nfabd2 2933 abid2f 2939 abeq2f 2940 nfrab1 3317 elabgtOLD 3604 elabgf 3605 elabgOLD 3608 nfsbc1d 3734 ss2ab 3993 ab0ALT 4310 abn0OLD 4315 euabsn 4662 iunab 4981 iinab 4997 zfrep4 5220 rnep 5836 sniota 6424 opabiotafun 6849 nfixp1 8706 scottexs 9645 scott0s 9646 cp 9649 symgval 18976 ofpreima 31002 qqhval2 31932 esum2dlem 32060 sigaclcu2 32088 bnj1366 32809 bnj1321 33007 bnj1384 33012 currysetlem 35134 currysetlem1 35136 bj-reabeq 35217 mptsnunlem 35509 topdifinffinlem 35518 scottabf 41858 compab 42060 ssfiunibd 42848 absnsb 44521 setrec2lem2 46400 |
Copyright terms: Public domain | W3C validator |