| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsab1 2722 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 2 | 1 | nfci 2887 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2714 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-nfc 2886 |
| This theorem is referenced by: nfabd2 2923 eqabf 2929 abid2fOLD 2931 nfrab1 3441 elabgf 3658 nfsbc1d 3788 ss2ab 4042 ab0ALT 4361 euabsn 4707 iunab 5032 iinab 5049 zfrep4 5268 rnep 5911 sniota 6527 opabiotafun 6964 nfixp1 8937 scottexs 9906 scott0s 9907 cp 9910 symgval 19357 ofpreima 32648 algextdeglem6 33761 qqhval2 34018 esum2dlem 34128 sigaclcu2 34156 bnj1366 34865 bnj1321 35063 bnj1384 35068 currysetlem 36968 currysetlem1 36970 bj-reabeq 37050 mptsnunlem 37361 topdifinffinlem 37370 scottabf 44231 compab 44433 permaxrep 44998 ssfiunibd 45305 absnsb 47023 setrec2lem2 49525 |
| Copyright terms: Public domain | W3C validator |