![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfab1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab1 | ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsab1 2720 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
2 | 1 | nfci 2891 | 1 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: {cab 2712 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-nfc 2890 |
This theorem is referenced by: nfabd2 2927 eqabf 2933 abid2fOLD 2935 nfrab1 3454 elabgtOLDOLD 3674 elabgf 3675 elabgOLD 3678 nfsbc1d 3809 ss2ab 4072 ab0ALT 4387 euabsn 4731 iunab 5056 iinab 5073 zfrep4 5299 rnep 5940 sniota 6554 opabiotafun 6989 nfixp1 8957 scottexs 9925 scott0s 9926 cp 9929 symgval 19403 ofpreima 32682 algextdeglem6 33728 qqhval2 33945 esum2dlem 34073 sigaclcu2 34101 bnj1366 34822 bnj1321 35020 bnj1384 35025 currysetlem 36928 currysetlem1 36930 bj-reabeq 37010 mptsnunlem 37321 topdifinffinlem 37330 scottabf 44236 compab 44438 ssfiunibd 45260 absnsb 46977 setrec2lem2 48925 |
Copyright terms: Public domain | W3C validator |