| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abid2fOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of abid2f 2924 as of 26-Feb-2025. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| abid2f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| abid2fOLD | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 2895 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | abid2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | cleqf 2922 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
| 4 | abid 2712 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴) | |
| 5 | 3, 4 | mpgbir 1799 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |