MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abid2f Structured version   Visualization version   GIF version

Theorem abid2f 2924
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 26-Feb-2025.)
Hypothesis
Ref Expression
abid2f.1 𝑥𝐴
Assertion
Ref Expression
abid2f {𝑥𝑥𝐴} = 𝐴

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . 4 𝑥𝐴
21eqabf 2923 . . 3 (𝐴 = {𝑥𝑥𝐴} ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
3 biid 261 . . 3 (𝑥𝐴𝑥𝐴)
42, 3mpgbir 1799 . 2 𝐴 = {𝑥𝑥𝐴}
54eqcomi 2739 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2708  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880
This theorem is referenced by:  mptctf  32649  rabexgf  44990  ssabf  45066  abssf  45078
  Copyright terms: Public domain W3C validator