Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abid2f | Structured version Visualization version GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) |
Ref | Expression |
---|---|
abid2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
abid2f | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2909 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | abid2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | cleqf 2938 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴)) |
4 | abid 2719 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴) | |
5 | 3, 4 | mpgbir 1802 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 |
This theorem is referenced by: mptctf 31052 rabexgf 42567 ssabf 42650 abssf 42662 |
Copyright terms: Public domain | W3C validator |