MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abn0OLD Structured version   Visualization version   GIF version

Theorem abn0OLD 4380
Description: Obsolete version of abn0 4379 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
abn0OLD ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)

Proof of Theorem abn0OLD
StepHypRef Expression
1 nfab1 2894 . . 3 𝑥{𝑥𝜑}
21n0f 4343 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ {𝑥𝜑})
3 abid 2707 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43exbii 1843 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
52, 4bitri 274 1 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1774  wcel 2099  {cab 2703  wne 2930  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-dif 3950  df-nul 4324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator