![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abn0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of abn0 4341 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abn0OLD | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2906 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | n0f 4303 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2714 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | exbii 1851 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
5 | 2, 4 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 ∈ wcel 2107 {cab 2710 ≠ wne 2940 ∅c0 4283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-dif 3914 df-nul 4284 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |