MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abn0OLD Structured version   Visualization version   GIF version

Theorem abn0OLD 4328
Description: Obsolete version of abn0 4327 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
abn0OLD ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)

Proof of Theorem abn0OLD
StepHypRef Expression
1 nfab1 2906 . . 3 𝑥{𝑥𝜑}
21n0f 4289 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ {𝑥𝜑})
3 abid 2717 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43exbii 1849 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
52, 4bitri 274 1 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1780  wcel 2105  {cab 2713  wne 2940  c0 4269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-dif 3901  df-nul 4270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator