Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abn0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of abn0 4327 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abn0OLD | ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2906 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | n0f 4289 | . 2 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑}) |
3 | abid 2717 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
5 | 2, 4 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1780 ∈ wcel 2105 {cab 2713 ≠ wne 2940 ∅c0 4269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-dif 3901 df-nul 4270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |