Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
2 | ab0 4308 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
3 | noel 4264 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | intnanr 488 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
5 | 2, 4 | mpgbir 1802 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2766 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-dif 3890 df-nul 4257 |
This theorem is referenced by: rabsnif 4659 fvmptrabfv 6906 supp0 7982 sup00 9223 scott0 9644 psgnfval 19108 pmtrsn 19127 00lsp 20243 rrgval 20558 uvtx0 27761 vtxdg0e 27841 wwlksn 28202 wspthsn 28213 iswwlksnon 28218 iswspthsnon 28221 clwwlk0on0 28456 zar0ring 31828 satf0 33334 leftval 34047 rightval 34048 fvmptrab 44784 fvmptrabdm 44785 prprspr2 44970 |
Copyright terms: Public domain | W3C validator |