| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3406 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 2 | ab0 4343 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
| 3 | noel 4301 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 5 | 2, 4 | mpgbir 1799 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3405 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: rabsnif 4687 fvmptrabfv 7000 supp0 8144 sup00 9416 scott0 9839 psgnfval 19430 pmtrsn 19449 rrgval 20606 00lsp 20887 leftval 27771 rightval 27772 uvtx0 29321 vtxdg0e 29402 wwlksn 29767 wspthsn 29778 iswwlksnon 29783 iswspthsnon 29786 clwwlk0on0 30021 fxpgaval 33124 zar0ring 33868 wevgblacfn 35096 satf0 35359 fvmptrab 47293 fvmptrabdm 47294 prprspr2 47519 initopropdlem 49229 termopropdlem 49230 |
| Copyright terms: Public domain | W3C validator |