MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0 Structured version   Visualization version   GIF version

Theorem rab0 4361
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 df-rab 3416 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
2 ab0 4355 . . 3 ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑))
3 noel 4313 . . . 4 ¬ 𝑥 ∈ ∅
43intnanr 487 . . 3 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
52, 4mpgbir 1799 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅
61, 5eqtri 2758 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  {cab 2713  {crab 3415  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-dif 3929  df-nul 4309
This theorem is referenced by:  rabsnif  4699  fvmptrabfv  7018  supp0  8164  sup00  9477  scott0  9900  psgnfval  19481  pmtrsn  19500  rrgval  20657  00lsp  20938  leftval  27823  rightval  27824  uvtx0  29373  vtxdg0e  29454  wwlksn  29819  wspthsn  29830  iswwlksnon  29835  iswspthsnon  29838  clwwlk0on0  30073  zar0ring  33909  wevgblacfn  35131  satf0  35394  fvmptrab  47321  fvmptrabdm  47322  prprspr2  47532  initopropdlem  49157  termopropdlem  49158
  Copyright terms: Public domain W3C validator