| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3420 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 2 | ab0 4360 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
| 3 | noel 4318 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 5 | 2, 4 | mpgbir 1798 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2757 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3419 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: rabsnif 4703 fvmptrabfv 7028 supp0 8172 sup00 9486 scott0 9908 psgnfval 19487 pmtrsn 19506 rrgval 20666 00lsp 20948 leftval 27839 rightval 27840 uvtx0 29340 vtxdg0e 29421 wwlksn 29786 wspthsn 29797 iswwlksnon 29802 iswspthsnon 29805 clwwlk0on0 30040 zar0ring 33852 wevgblacfn 35089 satf0 35352 fvmptrab 47277 fvmptrabdm 47278 prprspr2 47478 initopropdlem 48991 termopropdlem 48992 |
| Copyright terms: Public domain | W3C validator |