![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3425 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
2 | ab0 4366 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
3 | noel 4322 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
5 | 2, 4 | mpgbir 1793 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2752 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 {crab 3424 ∅c0 4314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-dif 3943 df-nul 4315 |
This theorem is referenced by: rabsnif 4719 fvmptrabfv 7019 supp0 8145 sup00 9455 scott0 9877 psgnfval 19410 pmtrsn 19429 00lsp 20818 rrgval 21187 leftval 27706 rightval 27707 uvtx0 29120 vtxdg0e 29200 wwlksn 29560 wspthsn 29571 iswwlksnon 29576 iswspthsnon 29579 clwwlk0on0 29814 zar0ring 33347 satf0 34852 fvmptrab 46485 fvmptrabdm 46486 prprspr2 46671 |
Copyright terms: Public domain | W3C validator |