MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0 Structured version   Visualization version   GIF version

Theorem rab0 4366
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 df-rab 3420 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
2 ab0 4360 . . 3 ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑))
3 noel 4318 . . . 4 ¬ 𝑥 ∈ ∅
43intnanr 487 . . 3 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
52, 4mpgbir 1798 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅
61, 5eqtri 2757 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2107  {cab 2712  {crab 3419  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-dif 3934  df-nul 4314
This theorem is referenced by:  rabsnif  4703  fvmptrabfv  7028  supp0  8172  sup00  9486  scott0  9908  psgnfval  19487  pmtrsn  19506  rrgval  20666  00lsp  20948  leftval  27839  rightval  27840  uvtx0  29340  vtxdg0e  29421  wwlksn  29786  wspthsn  29797  iswwlksnon  29802  iswspthsnon  29805  clwwlk0on0  30040  zar0ring  33852  wevgblacfn  35089  satf0  35352  fvmptrab  47277  fvmptrabdm  47278  prprspr2  47478  initopropdlem  48991  termopropdlem  48992
  Copyright terms: Public domain W3C validator