![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
2 | ab0 4402 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
3 | noel 4360 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
5 | 2, 4 | mpgbir 1797 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2768 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 df-nul 4353 |
This theorem is referenced by: rabsnif 4748 fvmptrabfv 7061 supp0 8206 sup00 9533 scott0 9955 psgnfval 19542 pmtrsn 19561 rrgval 20719 00lsp 21002 leftval 27920 rightval 27921 uvtx0 29429 vtxdg0e 29510 wwlksn 29870 wspthsn 29881 iswwlksnon 29886 iswspthsnon 29889 clwwlk0on0 30124 zar0ring 33824 wevgblacfn 35076 satf0 35340 fvmptrab 47207 fvmptrabdm 47208 prprspr2 47392 |
Copyright terms: Public domain | W3C validator |