| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3416 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 2 | ab0 4355 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
| 3 | noel 4313 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 5 | 2, 4 | mpgbir 1799 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2758 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 {crab 3415 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: rabsnif 4699 fvmptrabfv 7018 supp0 8164 sup00 9477 scott0 9900 psgnfval 19481 pmtrsn 19500 rrgval 20657 00lsp 20938 leftval 27823 rightval 27824 uvtx0 29373 vtxdg0e 29454 wwlksn 29819 wspthsn 29830 iswwlksnon 29835 iswspthsnon 29838 clwwlk0on0 30073 zar0ring 33909 wevgblacfn 35131 satf0 35394 fvmptrab 47321 fvmptrabdm 47322 prprspr2 47532 initopropdlem 49157 termopropdlem 49158 |
| Copyright terms: Public domain | W3C validator |