MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab0 Structured version   Visualization version   GIF version

Theorem rab0 4316
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
rab0 {𝑥 ∈ ∅ ∣ 𝜑} = ∅

Proof of Theorem rab0
StepHypRef Expression
1 df-rab 3073 . 2 {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)}
2 ab0 4308 . . 3 ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑))
3 noel 4264 . . . 4 ¬ 𝑥 ∈ ∅
43intnanr 488 . . 3 ¬ (𝑥 ∈ ∅ ∧ 𝜑)
52, 4mpgbir 1802 . 2 {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅
61, 5eqtri 2766 1 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-dif 3890  df-nul 4257
This theorem is referenced by:  rabsnif  4659  fvmptrabfv  6906  supp0  7982  sup00  9223  scott0  9644  psgnfval  19108  pmtrsn  19127  00lsp  20243  rrgval  20558  uvtx0  27761  vtxdg0e  27841  wwlksn  28202  wspthsn  28213  iswwlksnon  28218  iswspthsnon  28221  clwwlk0on0  28456  zar0ring  31828  satf0  33334  leftval  34047  rightval  34048  fvmptrab  44784  fvmptrabdm  44785  prprspr2  44970
  Copyright terms: Public domain W3C validator