| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version | ||
| Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3395 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
| 2 | ab0 4331 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
| 3 | noel 4289 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
| 5 | 2, 4 | mpgbir 1799 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3394 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: rabsnif 4675 fvmptrabfv 6962 supp0 8098 sup00 9355 scott0 9782 psgnfval 19379 pmtrsn 19398 rrgval 20582 00lsp 20884 leftval 27773 rightval 27774 uvtx0 29339 vtxdg0e 29420 wwlksn 29782 wspthsn 29793 iswwlksnon 29798 iswspthsnon 29801 clwwlk0on0 30036 fxpgaval 33109 zar0ring 33845 wevgblacfn 35082 satf0 35345 fvmptrab 47276 fvmptrabdm 47277 prprspr2 47502 initopropdlem 49225 termopropdlem 49226 |
| Copyright terms: Public domain | W3C validator |