![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rab0 | Structured version Visualization version GIF version |
Description: Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.) |
Ref | Expression |
---|---|
rab0 | ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} | |
2 | ab0 4386 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ ↔ ∀𝑥 ¬ (𝑥 ∈ ∅ ∧ 𝜑)) | |
3 | noel 4344 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | intnanr 487 | . . 3 ⊢ ¬ (𝑥 ∈ ∅ ∧ 𝜑) |
5 | 2, 4 | mpgbir 1796 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ ∅ ∧ 𝜑)} = ∅ |
6 | 1, 5 | eqtri 2763 | 1 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {crab 3433 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-dif 3966 df-nul 4340 |
This theorem is referenced by: rabsnif 4728 fvmptrabfv 7048 supp0 8189 sup00 9502 scott0 9924 psgnfval 19533 pmtrsn 19552 rrgval 20714 00lsp 20997 leftval 27917 rightval 27918 uvtx0 29426 vtxdg0e 29507 wwlksn 29867 wspthsn 29878 iswwlksnon 29883 iswspthsnon 29886 clwwlk0on0 30121 zar0ring 33839 wevgblacfn 35093 satf0 35357 fvmptrab 47242 fvmptrabdm 47243 prprspr2 47443 |
Copyright terms: Public domain | W3C validator |