| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqsn | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.) |
| Ref | Expression |
|---|---|
| rabeqsn | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | 1 | eqeq1i 2739 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋}) |
| 3 | absn 4627 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2712 {crab 3420 {csn 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-rab 3421 df-sn 4609 |
| This theorem is referenced by: rabeqsnd 4651 rabsn 4703 made0 27863 umgr2v2enb1 29487 clwwlknon1loop 30060 wlkl0 30329 zarclssn 33809 k0004val0 44108 |
| Copyright terms: Public domain | W3C validator |