MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqsn Structured version   Visualization version   GIF version

Theorem rabeqsn 4568
Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.)
Assertion
Ref Expression
rabeqsn ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabeqsn
StepHypRef Expression
1 df-rab 3060 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
21eqeq1i 2741 . 2 ({𝑥𝑉𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋})
3 absn 4545 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
42, 3bitri 278 1 ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2112  {cab 2714  {crab 3055  {csn 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-rab 3060  df-sn 4528
This theorem is referenced by:  rabsn  4623  umgr2v2enb1  27568  clwwlknon1loop  28135  wlkl0  28404  rabeqsnd  30521  zarclssn  31491  made0  33743  k0004val0  41382
  Copyright terms: Public domain W3C validator