MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqsn Structured version   Visualization version   GIF version

Theorem rabeqsn 4599
Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.)
Assertion
Ref Expression
rabeqsn ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabeqsn
StepHypRef Expression
1 df-rab 3072 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
21eqeq1i 2743 . 2 ({𝑥𝑉𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋})
3 absn 4576 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
42, 3bitri 274 1 ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072  df-sn 4559
This theorem is referenced by:  rabsn  4654  umgr2v2enb1  27796  clwwlknon1loop  28363  wlkl0  28632  rabeqsnd  30749  zarclssn  31725  made0  33984  k0004val0  41653
  Copyright terms: Public domain W3C validator