![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqsn | Structured version Visualization version GIF version |
Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.) |
Ref | Expression |
---|---|
rabeqsn | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
2 | 1 | eqeq1i 2745 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋}) |
3 | absn 4667 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-rab 3444 df-sn 4649 |
This theorem is referenced by: rabeqsnd 4691 rabsn 4746 made0 27930 umgr2v2enb1 29562 clwwlknon1loop 30130 wlkl0 30399 zarclssn 33819 k0004val0 44116 |
Copyright terms: Public domain | W3C validator |