MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqsn Structured version   Visualization version   GIF version

Theorem rabeqsn 4689
Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.)
Assertion
Ref Expression
rabeqsn ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabeqsn
StepHypRef Expression
1 df-rab 3444 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
21eqeq1i 2745 . 2 ({𝑥𝑉𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋})
3 absn 4667 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
42, 3bitri 275 1 ({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-rab 3444  df-sn 4649
This theorem is referenced by:  rabeqsnd  4691  rabsn  4746  made0  27930  umgr2v2enb1  29562  clwwlknon1loop  30130  wlkl0  30399  zarclssn  33819  k0004val0  44116
  Copyright terms: Public domain W3C validator