| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqsn | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.) |
| Ref | Expression |
|---|---|
| rabeqsn | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3398 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | 1 | eqeq1i 2738 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋}) |
| 3 | absn 4597 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) ↔ 𝑥 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {cab 2711 {crab 3397 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-rab 3398 df-sn 4578 |
| This theorem is referenced by: rabeqsnd 4623 rabsn 4675 made0 27828 umgr2v2enb1 29516 clwwlknon1loop 30089 wlkl0 30358 zarclssn 33897 k0004val0 44261 |
| Copyright terms: Public domain | W3C validator |