Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaval Structured version   Visualization version   GIF version

Theorem aiotaval 47219
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
aiotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem aiotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eusnsn 47150 . . . . 5 ∃!𝑧{𝑧} = {𝑦}
2 eqcom 2740 . . . . . 6 ({𝑦} = {𝑧} ↔ {𝑧} = {𝑦})
32eubii 2582 . . . . 5 (∃!𝑧{𝑦} = {𝑧} ↔ ∃!𝑧{𝑧} = {𝑦})
41, 3mpbir 231 . . . 4 ∃!𝑧{𝑦} = {𝑧}
5 eqeq1 2737 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑧} ↔ {𝑦} = {𝑧}))
65eubidv 2583 . . . 4 ({𝑥𝜑} = {𝑦} → (∃!𝑧{𝑥𝜑} = {𝑧} ↔ ∃!𝑧{𝑦} = {𝑧}))
74, 6mpbiri 258 . . 3 ({𝑥𝜑} = {𝑦} → ∃!𝑧{𝑥𝜑} = {𝑧})
8 absn 4595 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
9 reuabaiotaiota 47211 . . . 4 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
10 eqcom 2740 . . . 4 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
119, 10bitri 275 . . 3 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
127, 8, 113imtr3i 291 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = (℩𝑥𝜑))
13 iotaval 6460 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
1412, 13eqtrd 2768 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  ∃!weu 2565  {cab 2711  {csn 4575  cio 6440  ℩'caiota 47207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-sn 4576  df-pr 4578  df-uni 4859  df-int 4898  df-iota 6442  df-aiota 47209
This theorem is referenced by:  aiota0def  47220
  Copyright terms: Public domain W3C validator