Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaval Structured version   Visualization version   GIF version

Theorem aiotaval 44259
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
aiotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem aiotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eusnsn 44192 . . . . 5 ∃!𝑧{𝑧} = {𝑦}
2 eqcom 2744 . . . . . 6 ({𝑦} = {𝑧} ↔ {𝑧} = {𝑦})
32eubii 2584 . . . . 5 (∃!𝑧{𝑦} = {𝑧} ↔ ∃!𝑧{𝑧} = {𝑦})
41, 3mpbir 234 . . . 4 ∃!𝑧{𝑦} = {𝑧}
5 eqeq1 2741 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑧} ↔ {𝑦} = {𝑧}))
65eubidv 2585 . . . 4 ({𝑥𝜑} = {𝑦} → (∃!𝑧{𝑥𝜑} = {𝑧} ↔ ∃!𝑧{𝑦} = {𝑧}))
74, 6mpbiri 261 . . 3 ({𝑥𝜑} = {𝑦} → ∃!𝑧{𝑥𝜑} = {𝑧})
8 absn 4559 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
9 reuabaiotaiota 44251 . . . 4 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
10 eqcom 2744 . . . 4 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
119, 10bitri 278 . . 3 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
127, 8, 113imtr3i 294 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = (℩𝑥𝜑))
13 iotaval 6354 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
1412, 13eqtrd 2777 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541   = wceq 1543  ∃!weu 2567  {cab 2714  {csn 4541  cio 6336  ℩'caiota 44247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-sn 4542  df-pr 4544  df-uni 4820  df-int 4860  df-iota 6338  df-aiota 44249
This theorem is referenced by:  aiota0def  44260
  Copyright terms: Public domain W3C validator