Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaval Structured version   Visualization version   GIF version

Theorem aiotaval 44587
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
aiotaval (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem aiotaval
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eusnsn 44520 . . . . 5 ∃!𝑧{𝑧} = {𝑦}
2 eqcom 2745 . . . . . 6 ({𝑦} = {𝑧} ↔ {𝑧} = {𝑦})
32eubii 2585 . . . . 5 (∃!𝑧{𝑦} = {𝑧} ↔ ∃!𝑧{𝑧} = {𝑦})
41, 3mpbir 230 . . . 4 ∃!𝑧{𝑦} = {𝑧}
5 eqeq1 2742 . . . . 5 ({𝑥𝜑} = {𝑦} → ({𝑥𝜑} = {𝑧} ↔ {𝑦} = {𝑧}))
65eubidv 2586 . . . 4 ({𝑥𝜑} = {𝑦} → (∃!𝑧{𝑥𝜑} = {𝑧} ↔ ∃!𝑧{𝑦} = {𝑧}))
74, 6mpbiri 257 . . 3 ({𝑥𝜑} = {𝑦} → ∃!𝑧{𝑥𝜑} = {𝑧})
8 absn 4579 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
9 reuabaiotaiota 44579 . . . 4 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
10 eqcom 2745 . . . 4 ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
119, 10bitri 274 . . 3 (∃!𝑧{𝑥𝜑} = {𝑧} ↔ (℩'𝑥𝜑) = (℩𝑥𝜑))
127, 8, 113imtr3i 291 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = (℩𝑥𝜑))
13 iotaval 6407 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦)
1412, 13eqtrd 2778 1 (∀𝑥(𝜑𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  ∃!weu 2568  {cab 2715  {csn 4561  cio 6389  ℩'caiota 44575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-int 4880  df-iota 6391  df-aiota 44577
This theorem is referenced by:  aiota0def  44588
  Copyright terms: Public domain W3C validator