Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaval | Structured version Visualization version GIF version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of (alternate) iota. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
aiotaval | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusnsn 44407 | . . . . 5 ⊢ ∃!𝑧{𝑧} = {𝑦} | |
2 | eqcom 2745 | . . . . . 6 ⊢ ({𝑦} = {𝑧} ↔ {𝑧} = {𝑦}) | |
3 | 2 | eubii 2585 | . . . . 5 ⊢ (∃!𝑧{𝑦} = {𝑧} ↔ ∃!𝑧{𝑧} = {𝑦}) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ ∃!𝑧{𝑦} = {𝑧} |
5 | eqeq1 2742 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦} = {𝑧})) | |
6 | 5 | eubidv 2586 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (∃!𝑧{𝑥 ∣ 𝜑} = {𝑧} ↔ ∃!𝑧{𝑦} = {𝑧})) |
7 | 4, 6 | mpbiri 257 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} → ∃!𝑧{𝑥 ∣ 𝜑} = {𝑧}) |
8 | absn 4576 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
9 | reuabaiotaiota 44466 | . . . 4 ⊢ (∃!𝑧{𝑥 ∣ 𝜑} = {𝑧} ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | |
10 | eqcom 2745 | . . . 4 ⊢ ((℩𝑥𝜑) = (℩'𝑥𝜑) ↔ (℩'𝑥𝜑) = (℩𝑥𝜑)) | |
11 | 9, 10 | bitri 274 | . . 3 ⊢ (∃!𝑧{𝑥 ∣ 𝜑} = {𝑧} ↔ (℩'𝑥𝜑) = (℩𝑥𝜑)) |
12 | 7, 8, 11 | 3imtr3i 290 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = (℩𝑥𝜑)) |
13 | iotaval 6392 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩𝑥𝜑) = 𝑦) | |
14 | 12, 13 | eqtrd 2778 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → (℩'𝑥𝜑) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃!weu 2568 {cab 2715 {csn 4558 ℩cio 6374 ℩'caiota 44462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-int 4877 df-iota 6376 df-aiota 44464 |
This theorem is referenced by: aiota0def 44475 |
Copyright terms: Public domain | W3C validator |