| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . 3
⊢ (𝑦 = 0s → 𝑦 = 0s
) |
| 2 | | oveq1 7412 |
. . . . 5
⊢ (𝑦 = 0s → (𝑦 -s 1s ) =
( 0s -s 1s )) |
| 3 | 2 | sneqd 4613 |
. . . 4
⊢ (𝑦 = 0s → {(𝑦 -s 1s )}
= {( 0s -s 1s )}) |
| 4 | 3 | oveq1d 7420 |
. . 3
⊢ (𝑦 = 0s → ({(𝑦 -s 1s )}
|s ∅) = ({( 0s -s 1s )} |s
∅)) |
| 5 | 1, 4 | eqeq12d 2751 |
. 2
⊢ (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 0s = ({( 0s -s 1s )} |s
∅))) |
| 6 | | id 22 |
. . 3
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
| 7 | | oveq1 7412 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s
)) |
| 8 | 7 | sneqd 4613 |
. . . 4
⊢ (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s
)}) |
| 9 | 8 | oveq1d 7420 |
. . 3
⊢ (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) =
({(𝑥 -s
1s )} |s ∅)) |
| 10 | 6, 9 | eqeq12d 2751 |
. 2
⊢ (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 𝑥 = ({(𝑥 -s 1s )}
|s ∅))) |
| 11 | | id 22 |
. . 3
⊢ (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s
)) |
| 12 | | oveq1 7412 |
. . . . 5
⊢ (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) =
((𝑥 +s
1s ) -s 1s )) |
| 13 | 12 | sneqd 4613 |
. . . 4
⊢ (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )}
= {((𝑥 +s
1s ) -s 1s )}) |
| 14 | 13 | oveq1d 7420 |
. . 3
⊢ (𝑦 = (𝑥 +s 1s ) →
({(𝑦 -s
1s )} |s ∅) = ({((𝑥 +s 1s ) -s
1s )} |s ∅)) |
| 15 | 11, 14 | eqeq12d 2751 |
. 2
⊢ (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ (𝑥 +s
1s ) = ({((𝑥
+s 1s ) -s 1s )} |s
∅))) |
| 16 | | id 22 |
. . 3
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
| 17 | | oveq1 7412 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s
)) |
| 18 | 17 | sneqd 4613 |
. . . 4
⊢ (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s
)}) |
| 19 | 18 | oveq1d 7420 |
. . 3
⊢ (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) =
({(𝐴 -s
1s )} |s ∅)) |
| 20 | 16, 19 | eqeq12d 2751 |
. 2
⊢ (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 𝐴 = ({(𝐴 -s 1s )}
|s ∅))) |
| 21 | | 0sno 27790 |
. . . . . . 7
⊢
0s ∈ No |
| 22 | | 1sno 27791 |
. . . . . . 7
⊢
1s ∈ No |
| 23 | | subscl 28018 |
. . . . . . 7
⊢ ((
0s ∈ No ∧ 1s
∈ No ) → ( 0s -s
1s ) ∈ No ) |
| 24 | 21, 22, 23 | mp2an 692 |
. . . . . 6
⊢ (
0s -s 1s ) ∈ No
|
| 25 | 24 | a1i 11 |
. . . . 5
⊢ (⊤
→ ( 0s -s 1s ) ∈ No ) |
| 26 | 21 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 0s ∈ No ) |
| 27 | 26 | sltm1d 28057 |
. . . . 5
⊢ (⊤
→ ( 0s -s 1s ) <s 0s
) |
| 28 | 25, 27 | cutneg 27797 |
. . . 4
⊢ (⊤
→ ({( 0s -s 1s )} |s ∅) =
0s ) |
| 29 | 28 | mptru 1547 |
. . 3
⊢ ({(
0s -s 1s )} |s ∅) =
0s |
| 30 | 29 | eqcomi 2744 |
. 2
⊢
0s = ({( 0s -s 1s )} |s
∅) |
| 31 | | ovex 7438 |
. . . . . . . . . . 11
⊢ (𝑥 -s 1s )
∈ V |
| 32 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) =
((𝑥 -s
1s ) +s 1s )) |
| 33 | 32 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s
1s ))) |
| 34 | 31, 33 | rexsn 4658 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )
↔ 𝑎 = ((𝑥 -s 1s )
+s 1s )) |
| 35 | | n0sno 28268 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ0s
→ 𝑥 ∈ No ) |
| 36 | | npcans 28031 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
((𝑥 -s
1s ) +s 1s ) = 𝑥) |
| 37 | 35, 22, 36 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0s
→ ((𝑥 -s
1s ) +s 1s ) = 𝑥) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ((𝑥
-s 1s ) +s 1s ) = 𝑥) |
| 39 | 38 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑎 =
((𝑥 -s
1s ) +s 1s ) ↔ 𝑎 = 𝑥)) |
| 40 | 34, 39 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
| 41 | 40 | alrimiv 1927 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
| 42 | | absn 4621 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
| 43 | 41, 42 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
= {𝑥}) |
| 44 | 21 | elexi 3482 |
. . . . . . . . . . 11
⊢
0s ∈ V |
| 45 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s
)) |
| 46 | 45 | eqeq2d 2746 |
. . . . . . . . . . 11
⊢ (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s
))) |
| 47 | 44, 46 | rexsn 4658 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s
)) |
| 48 | 35 | addsridd 27924 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 +s
0s ) = 𝑥) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 0s ) = 𝑥) |
| 50 | 49 | eqeq2d 2746 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑎 =
(𝑥 +s
0s ) ↔ 𝑎 =
𝑥)) |
| 51 | 47, 50 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
| 52 | 51 | alrimiv 1927 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
| 53 | | absn 4621 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
| 54 | 52, 53 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {𝑎
∣ ∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥}) |
| 55 | 43, 54 | uneq12d 4144 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥})) |
| 56 | | unidm 4132 |
. . . . . 6
⊢ ({𝑥} ∪ {𝑥}) = {𝑥} |
| 57 | 55, 56 | eqtrdi 2786 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥}) |
| 58 | | rex0 4335 |
. . . . . . . . 9
⊢ ¬
∃𝑏 ∈ ∅
𝑎 = (𝑏 +s 1s
) |
| 59 | 58 | abf 4381 |
. . . . . . . 8
⊢ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} =
∅ |
| 60 | | rex0 4335 |
. . . . . . . . 9
⊢ ¬
∃𝑏 ∈ ∅
𝑎 = (𝑥 +s 𝑏) |
| 61 | 60 | abf 4381 |
. . . . . . . 8
⊢ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅ |
| 62 | 59, 61 | uneq12i 4141 |
. . . . . . 7
⊢ ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪
∅) |
| 63 | | un0 4369 |
. . . . . . 7
⊢ (∅
∪ ∅) = ∅ |
| 64 | 62, 63 | eqtri 2758 |
. . . . . 6
⊢ ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅ |
| 65 | 64 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
∅ 𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ ∅
𝑎 = (𝑥 +s 𝑏)}) = ∅) |
| 66 | 57, 65 | oveq12d 7423 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅)) |
| 67 | | subscl 28018 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
(𝑥 -s
1s ) ∈ No ) |
| 68 | 35, 22, 67 | sylancl 586 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 -s
1s ) ∈ No ) |
| 69 | 68 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
-s 1s ) ∈ No
) |
| 70 | 31 | snelpw 5420 |
. . . . . . 7
⊢ ((𝑥 -s 1s )
∈ No ↔ {(𝑥 -s 1s )} ∈
𝒫 No ) |
| 71 | 69, 70 | sylib 218 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {(𝑥
-s 1s )} ∈ 𝒫 No
) |
| 72 | | nulssgt 27762 |
. . . . . 6
⊢ ({(𝑥 -s 1s )}
∈ 𝒫 No → {(𝑥 -s 1s )} <<s
∅) |
| 73 | 71, 72 | syl 17 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {(𝑥
-s 1s )} <<s ∅) |
| 74 | 44 | snelpw 5420 |
. . . . . . 7
⊢ (
0s ∈ No ↔ { 0s }
∈ 𝒫 No ) |
| 75 | 21, 74 | mpbi 230 |
. . . . . 6
⊢ {
0s } ∈ 𝒫 No
|
| 76 | | nulssgt 27762 |
. . . . . 6
⊢ ({
0s } ∈ 𝒫 No → {
0s } <<s ∅) |
| 77 | 75, 76 | mp1i 13 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → { 0s } <<s ∅) |
| 78 | | simpr 484 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 𝑥 =
({(𝑥 -s
1s )} |s ∅)) |
| 79 | | df-1s 27789 |
. . . . . 6
⊢
1s = ({ 0s } |s ∅) |
| 80 | 79 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 1s = ({ 0s } |s
∅)) |
| 81 | 73, 77, 78, 80 | addsunif 27961 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}))) |
| 82 | 35 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 𝑥
∈ No ) |
| 83 | | pncans 28028 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
((𝑥 +s
1s ) -s 1s ) = 𝑥) |
| 84 | 82, 22, 83 | sylancl 586 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ((𝑥
+s 1s ) -s 1s ) = 𝑥) |
| 85 | 84 | sneqd 4613 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {((𝑥
+s 1s ) -s 1s )} = {𝑥}) |
| 86 | 85 | oveq1d 7420 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({((𝑥
+s 1s ) -s 1s )} |s ∅) =
({𝑥} |s
∅)) |
| 87 | 66, 81, 86 | 3eqtr4d 2780 |
. . 3
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 1s ) = ({((𝑥 +s 1s ) -s
1s )} |s ∅)) |
| 88 | 87 | ex 412 |
. 2
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 = ({(𝑥 -s 1s )}
|s ∅) → (𝑥
+s 1s ) = ({((𝑥 +s 1s ) -s
1s )} |s ∅))) |
| 89 | 5, 10, 15, 20, 30, 88 | n0sind 28277 |
1
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 = ({(𝐴 -s 1s )}
|s ∅)) |