MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0scut Structured version   Visualization version   GIF version

Theorem n0scut 28356
Description: A cut form for surreal naturals. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0scut (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))

Proof of Theorem n0scut
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑦 = 0s𝑦 = 0s )
2 oveq1 7455 . . . . 5 (𝑦 = 0s → (𝑦 -s 1s ) = ( 0s -s 1s ))
32sneqd 4660 . . . 4 (𝑦 = 0s → {(𝑦 -s 1s )} = {( 0s -s 1s )})
43oveq1d 7463 . . 3 (𝑦 = 0s → ({(𝑦 -s 1s )} |s ∅) = ({( 0s -s 1s )} |s ∅))
51, 4eqeq12d 2756 . 2 (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 0s = ({( 0s -s 1s )} |s ∅)))
6 id 22 . . 3 (𝑦 = 𝑥𝑦 = 𝑥)
7 oveq1 7455 . . . . 5 (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s ))
87sneqd 4660 . . . 4 (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s )})
98oveq1d 7463 . . 3 (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) = ({(𝑥 -s 1s )} |s ∅))
106, 9eqeq12d 2756 . 2 (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝑥 = ({(𝑥 -s 1s )} |s ∅)))
11 id 22 . . 3 (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s ))
12 oveq1 7455 . . . . 5 (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) = ((𝑥 +s 1s ) -s 1s ))
1312sneqd 4660 . . . 4 (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )} = {((𝑥 +s 1s ) -s 1s )})
1413oveq1d 7463 . . 3 (𝑦 = (𝑥 +s 1s ) → ({(𝑦 -s 1s )} |s ∅) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
1511, 14eqeq12d 2756 . 2 (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
16 id 22 . . 3 (𝑦 = 𝐴𝑦 = 𝐴)
17 oveq1 7455 . . . . 5 (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s ))
1817sneqd 4660 . . . 4 (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s )})
1918oveq1d 7463 . . 3 (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s ∅))
2016, 19eqeq12d 2756 . 2 (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
21 0sno 27889 . . . . . . . 8 0s No
22 1sno 27890 . . . . . . . 8 1s No
23 subscl 28110 . . . . . . . 8 (( 0s No ∧ 1s No ) → ( 0s -s 1s ) ∈ No )
2421, 22, 23mp2an 691 . . . . . . 7 ( 0s -s 1s ) ∈ No
2524a1i 11 . . . . . 6 (⊤ → ( 0s -s 1s ) ∈ No )
2621a1i 11 . . . . . 6 (⊤ → 0s No )
27 0slt1s 27892 . . . . . . . 8 0s <s 1s
28 addslid 28019 . . . . . . . . 9 ( 1s No → ( 0s +s 1s ) = 1s )
2922, 28ax-mp 5 . . . . . . . 8 ( 0s +s 1s ) = 1s
3027, 29breqtrri 5193 . . . . . . 7 0s <s ( 0s +s 1s )
3122a1i 11 . . . . . . . 8 (⊤ → 1s No )
3226, 31, 26sltsubaddd 28137 . . . . . . 7 (⊤ → (( 0s -s 1s ) <s 0s ↔ 0s <s ( 0s +s 1s )))
3330, 32mpbiri 258 . . . . . 6 (⊤ → ( 0s -s 1s ) <s 0s )
3425, 26, 33ssltsn 27855 . . . . 5 (⊤ → {( 0s -s 1s )} <<s { 0s })
3521elexi 3511 . . . . . . . . 9 0s ∈ V
3635snelpw 5465 . . . . . . . 8 ( 0s No ↔ { 0s } ∈ 𝒫 No )
3721, 36mpbi 230 . . . . . . 7 { 0s } ∈ 𝒫 No
38 nulssgt 27861 . . . . . . 7 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3937, 38ax-mp 5 . . . . . 6 { 0s } <<s ∅
4039a1i 11 . . . . 5 (⊤ → { 0s } <<s ∅)
4134, 40cuteq0 27895 . . . 4 (⊤ → ({( 0s -s 1s )} |s ∅) = 0s )
4241mptru 1544 . . 3 ({( 0s -s 1s )} |s ∅) = 0s
4342eqcomi 2749 . 2 0s = ({( 0s -s 1s )} |s ∅)
44 ovex 7481 . . . . . . . . . . 11 (𝑥 -s 1s ) ∈ V
45 oveq1 7455 . . . . . . . . . . . 12 (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) = ((𝑥 -s 1s ) +s 1s ))
4645eqeq2d 2751 . . . . . . . . . . 11 (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s )))
4744, 46rexsn 4706 . . . . . . . . . 10 (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s ))
48 n0sno 28346 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0s𝑥 No )
49 npcans 28123 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5048, 22, 49sylancl 585 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5150adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5251eqeq2d 2751 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = ((𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥))
5347, 52bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5453alrimiv 1926 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
55 absn 4667 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5654, 55sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥})
57 oveq2 7456 . . . . . . . . . . . 12 (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s ))
5857eqeq2d 2751 . . . . . . . . . . 11 (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s )))
5935, 58rexsn 4706 . . . . . . . . . 10 (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s ))
6048addsridd 28016 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 0s ) = 𝑥)
6160adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 0s ) = 𝑥)
6261eqeq2d 2751 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = (𝑥 +s 0s ) ↔ 𝑎 = 𝑥))
6359, 62bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6463alrimiv 1926 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
65 absn 4667 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6664, 65sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥})
6756, 66uneq12d 4192 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥}))
68 unidm 4180 . . . . . 6 ({𝑥} ∪ {𝑥}) = {𝑥}
6967, 68eqtrdi 2796 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥})
70 rex0 4383 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )
7170abf 4429 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} = ∅
72 rex0 4383 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)
7372abf 4429 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅
7471, 73uneq12i 4189 . . . . . . 7 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪ ∅)
75 un0 4417 . . . . . . 7 (∅ ∪ ∅) = ∅
7674, 75eqtri 2768 . . . . . 6 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅
7776a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅)
7869, 77oveq12d 7466 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅))
79 subscl 28110 . . . . . . . . 9 ((𝑥 No ∧ 1s No ) → (𝑥 -s 1s ) ∈ No )
8048, 22, 79sylancl 585 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 -s 1s ) ∈ No )
8180adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 -s 1s ) ∈ No )
8244snelpw 5465 . . . . . . 7 ((𝑥 -s 1s ) ∈ No ↔ {(𝑥 -s 1s )} ∈ 𝒫 No )
8381, 82sylib 218 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} ∈ 𝒫 No )
84 nulssgt 27861 . . . . . 6 ({(𝑥 -s 1s )} ∈ 𝒫 No → {(𝑥 -s 1s )} <<s ∅)
8583, 84syl 17 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} <<s ∅)
8639a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → { 0s } <<s ∅)
87 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 = ({(𝑥 -s 1s )} |s ∅))
88 df-1s 27888 . . . . . 6 1s = ({ 0s } |s ∅)
8988a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 1s = ({ 0s } |s ∅))
9085, 86, 87, 89addsunif 28053 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})))
9148adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 No )
92 pncans 28120 . . . . . . 7 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9391, 22, 92sylancl 585 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9493sneqd 4660 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
9594oveq1d 7463 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
9678, 90, 953eqtr4d 2790 . . 3 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
9796ex 412 . 2 (𝑥 ∈ ℕ0s → (𝑥 = ({(𝑥 -s 1s )} |s ∅) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
985, 10, 15, 20, 43, 97n0sind 28355 1 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wtru 1538  wcel 2108  {cab 2717  wrex 3076  cun 3974  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   <<s csslt 27843   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   -s csubs 28070  0scnn0s 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338
This theorem is referenced by:  n0ons  28357  n0sbday  28372  zscut  28411  addhalfcut  28437
  Copyright terms: Public domain W3C validator