MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0scut Structured version   Visualization version   GIF version

Theorem n0scut 28274
Description: A cut form for surreal naturals. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0scut (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))

Proof of Theorem n0scut
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑦 = 0s𝑦 = 0s )
2 oveq1 7420 . . . . 5 (𝑦 = 0s → (𝑦 -s 1s ) = ( 0s -s 1s ))
32sneqd 4618 . . . 4 (𝑦 = 0s → {(𝑦 -s 1s )} = {( 0s -s 1s )})
43oveq1d 7428 . . 3 (𝑦 = 0s → ({(𝑦 -s 1s )} |s ∅) = ({( 0s -s 1s )} |s ∅))
51, 4eqeq12d 2750 . 2 (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 0s = ({( 0s -s 1s )} |s ∅)))
6 id 22 . . 3 (𝑦 = 𝑥𝑦 = 𝑥)
7 oveq1 7420 . . . . 5 (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s ))
87sneqd 4618 . . . 4 (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s )})
98oveq1d 7428 . . 3 (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) = ({(𝑥 -s 1s )} |s ∅))
106, 9eqeq12d 2750 . 2 (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝑥 = ({(𝑥 -s 1s )} |s ∅)))
11 id 22 . . 3 (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s ))
12 oveq1 7420 . . . . 5 (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) = ((𝑥 +s 1s ) -s 1s ))
1312sneqd 4618 . . . 4 (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )} = {((𝑥 +s 1s ) -s 1s )})
1413oveq1d 7428 . . 3 (𝑦 = (𝑥 +s 1s ) → ({(𝑦 -s 1s )} |s ∅) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
1511, 14eqeq12d 2750 . 2 (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
16 id 22 . . 3 (𝑦 = 𝐴𝑦 = 𝐴)
17 oveq1 7420 . . . . 5 (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s ))
1817sneqd 4618 . . . 4 (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s )})
1918oveq1d 7428 . . 3 (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s ∅))
2016, 19eqeq12d 2750 . 2 (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
21 0sno 27807 . . . . . . . 8 0s No
22 1sno 27808 . . . . . . . 8 1s No
23 subscl 28028 . . . . . . . 8 (( 0s No ∧ 1s No ) → ( 0s -s 1s ) ∈ No )
2421, 22, 23mp2an 692 . . . . . . 7 ( 0s -s 1s ) ∈ No
2524a1i 11 . . . . . 6 (⊤ → ( 0s -s 1s ) ∈ No )
2621a1i 11 . . . . . 6 (⊤ → 0s No )
27 0slt1s 27810 . . . . . . . 8 0s <s 1s
28 addslid 27937 . . . . . . . . 9 ( 1s No → ( 0s +s 1s ) = 1s )
2922, 28ax-mp 5 . . . . . . . 8 ( 0s +s 1s ) = 1s
3027, 29breqtrri 5150 . . . . . . 7 0s <s ( 0s +s 1s )
3122a1i 11 . . . . . . . 8 (⊤ → 1s No )
3226, 31, 26sltsubaddd 28055 . . . . . . 7 (⊤ → (( 0s -s 1s ) <s 0s ↔ 0s <s ( 0s +s 1s )))
3330, 32mpbiri 258 . . . . . 6 (⊤ → ( 0s -s 1s ) <s 0s )
3425, 26, 33ssltsn 27773 . . . . 5 (⊤ → {( 0s -s 1s )} <<s { 0s })
3521elexi 3486 . . . . . . . . 9 0s ∈ V
3635snelpw 5430 . . . . . . . 8 ( 0s No ↔ { 0s } ∈ 𝒫 No )
3721, 36mpbi 230 . . . . . . 7 { 0s } ∈ 𝒫 No
38 nulssgt 27779 . . . . . . 7 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3937, 38ax-mp 5 . . . . . 6 { 0s } <<s ∅
4039a1i 11 . . . . 5 (⊤ → { 0s } <<s ∅)
4134, 40cuteq0 27813 . . . 4 (⊤ → ({( 0s -s 1s )} |s ∅) = 0s )
4241mptru 1546 . . 3 ({( 0s -s 1s )} |s ∅) = 0s
4342eqcomi 2743 . 2 0s = ({( 0s -s 1s )} |s ∅)
44 ovex 7446 . . . . . . . . . . 11 (𝑥 -s 1s ) ∈ V
45 oveq1 7420 . . . . . . . . . . . 12 (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) = ((𝑥 -s 1s ) +s 1s ))
4645eqeq2d 2745 . . . . . . . . . . 11 (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s )))
4744, 46rexsn 4662 . . . . . . . . . 10 (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s ))
48 n0sno 28264 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0s𝑥 No )
49 npcans 28041 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5048, 22, 49sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5150adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5251eqeq2d 2745 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = ((𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥))
5347, 52bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5453alrimiv 1926 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
55 absn 4625 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5654, 55sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥})
57 oveq2 7421 . . . . . . . . . . . 12 (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s ))
5857eqeq2d 2745 . . . . . . . . . . 11 (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s )))
5935, 58rexsn 4662 . . . . . . . . . 10 (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s ))
6048addsridd 27934 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 0s ) = 𝑥)
6160adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 0s ) = 𝑥)
6261eqeq2d 2745 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = (𝑥 +s 0s ) ↔ 𝑎 = 𝑥))
6359, 62bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6463alrimiv 1926 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
65 absn 4625 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6664, 65sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥})
6756, 66uneq12d 4149 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥}))
68 unidm 4137 . . . . . 6 ({𝑥} ∪ {𝑥}) = {𝑥}
6967, 68eqtrdi 2785 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥})
70 rex0 4340 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )
7170abf 4386 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} = ∅
72 rex0 4340 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)
7372abf 4386 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅
7471, 73uneq12i 4146 . . . . . . 7 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪ ∅)
75 un0 4374 . . . . . . 7 (∅ ∪ ∅) = ∅
7674, 75eqtri 2757 . . . . . 6 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅
7776a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅)
7869, 77oveq12d 7431 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅))
79 subscl 28028 . . . . . . . . 9 ((𝑥 No ∧ 1s No ) → (𝑥 -s 1s ) ∈ No )
8048, 22, 79sylancl 586 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 -s 1s ) ∈ No )
8180adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 -s 1s ) ∈ No )
8244snelpw 5430 . . . . . . 7 ((𝑥 -s 1s ) ∈ No ↔ {(𝑥 -s 1s )} ∈ 𝒫 No )
8381, 82sylib 218 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} ∈ 𝒫 No )
84 nulssgt 27779 . . . . . 6 ({(𝑥 -s 1s )} ∈ 𝒫 No → {(𝑥 -s 1s )} <<s ∅)
8583, 84syl 17 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} <<s ∅)
8639a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → { 0s } <<s ∅)
87 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 = ({(𝑥 -s 1s )} |s ∅))
88 df-1s 27806 . . . . . 6 1s = ({ 0s } |s ∅)
8988a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 1s = ({ 0s } |s ∅))
9085, 86, 87, 89addsunif 27971 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})))
9148adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 No )
92 pncans 28038 . . . . . . 7 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9391, 22, 92sylancl 586 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9493sneqd 4618 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
9594oveq1d 7428 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
9678, 90, 953eqtr4d 2779 . . 3 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
9796ex 412 . 2 (𝑥 ∈ ℕ0s → (𝑥 = ({(𝑥 -s 1s )} |s ∅) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
985, 10, 15, 20, 43, 97n0sind 28273 1 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wtru 1540  wcel 2107  {cab 2712  wrex 3059  cun 3929  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5123  (class class class)co 7413   No csur 27620   <s cslt 27621   <<s csslt 27761   |s cscut 27763   0s c0s 27803   1s c1s 27804   +s cadds 27928   -s csubs 27988  0scnn0s 28254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-nadd 8686  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764  df-0s 27805  df-1s 27806  df-made 27822  df-old 27823  df-left 27825  df-right 27826  df-norec 27907  df-norec2 27918  df-adds 27929  df-negs 27989  df-subs 27990  df-n0s 28256
This theorem is referenced by:  n0ons  28275  n0sbday  28290  zscut  28329  addhalfcut  28355
  Copyright terms: Public domain W3C validator