MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0scut Structured version   Visualization version   GIF version

Theorem n0scut 28249
Description: A cut form for non-negative surreal integers. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0scut (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))

Proof of Theorem n0scut
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑦 = 0s𝑦 = 0s )
2 oveq1 7360 . . . . 5 (𝑦 = 0s → (𝑦 -s 1s ) = ( 0s -s 1s ))
32sneqd 4591 . . . 4 (𝑦 = 0s → {(𝑦 -s 1s )} = {( 0s -s 1s )})
43oveq1d 7368 . . 3 (𝑦 = 0s → ({(𝑦 -s 1s )} |s ∅) = ({( 0s -s 1s )} |s ∅))
51, 4eqeq12d 2745 . 2 (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 0s = ({( 0s -s 1s )} |s ∅)))
6 id 22 . . 3 (𝑦 = 𝑥𝑦 = 𝑥)
7 oveq1 7360 . . . . 5 (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s ))
87sneqd 4591 . . . 4 (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s )})
98oveq1d 7368 . . 3 (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) = ({(𝑥 -s 1s )} |s ∅))
106, 9eqeq12d 2745 . 2 (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝑥 = ({(𝑥 -s 1s )} |s ∅)))
11 id 22 . . 3 (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s ))
12 oveq1 7360 . . . . 5 (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) = ((𝑥 +s 1s ) -s 1s ))
1312sneqd 4591 . . . 4 (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )} = {((𝑥 +s 1s ) -s 1s )})
1413oveq1d 7368 . . 3 (𝑦 = (𝑥 +s 1s ) → ({(𝑦 -s 1s )} |s ∅) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
1511, 14eqeq12d 2745 . 2 (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
16 id 22 . . 3 (𝑦 = 𝐴𝑦 = 𝐴)
17 oveq1 7360 . . . . 5 (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s ))
1817sneqd 4591 . . . 4 (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s )})
1918oveq1d 7368 . . 3 (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s ∅))
2016, 19eqeq12d 2745 . 2 (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
21 0sno 27758 . . . . . . 7 0s No
22 1sno 27759 . . . . . . 7 1s No
23 subscl 27989 . . . . . . 7 (( 0s No ∧ 1s No ) → ( 0s -s 1s ) ∈ No )
2421, 22, 23mp2an 692 . . . . . 6 ( 0s -s 1s ) ∈ No
2524a1i 11 . . . . 5 (⊤ → ( 0s -s 1s ) ∈ No )
2621a1i 11 . . . . . 6 (⊤ → 0s No )
2726sltm1d 28028 . . . . 5 (⊤ → ( 0s -s 1s ) <s 0s )
2825, 27cutneg 27765 . . . 4 (⊤ → ({( 0s -s 1s )} |s ∅) = 0s )
2928mptru 1547 . . 3 ({( 0s -s 1s )} |s ∅) = 0s
3029eqcomi 2738 . 2 0s = ({( 0s -s 1s )} |s ∅)
31 ovex 7386 . . . . . . . . . . 11 (𝑥 -s 1s ) ∈ V
32 oveq1 7360 . . . . . . . . . . . 12 (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) = ((𝑥 -s 1s ) +s 1s ))
3332eqeq2d 2740 . . . . . . . . . . 11 (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s )))
3431, 33rexsn 4636 . . . . . . . . . 10 (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s ))
35 n0sno 28239 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0s𝑥 No )
36 npcans 28002 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3735, 22, 36sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3837adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3938eqeq2d 2740 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = ((𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥))
4034, 39bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
4140alrimiv 1927 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
42 absn 4599 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
4341, 42sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥})
4421elexi 3461 . . . . . . . . . . 11 0s ∈ V
45 oveq2 7361 . . . . . . . . . . . 12 (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s ))
4645eqeq2d 2740 . . . . . . . . . . 11 (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s )))
4744, 46rexsn 4636 . . . . . . . . . 10 (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s ))
4835addsridd 27895 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 0s ) = 𝑥)
4948adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 0s ) = 𝑥)
5049eqeq2d 2740 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = (𝑥 +s 0s ) ↔ 𝑎 = 𝑥))
5147, 50bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
5251alrimiv 1927 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
53 absn 4599 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
5452, 53sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥})
5543, 54uneq12d 4122 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥}))
56 unidm 4110 . . . . . 6 ({𝑥} ∪ {𝑥}) = {𝑥}
5755, 56eqtrdi 2780 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥})
58 rex0 4313 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )
5958abf 4359 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} = ∅
60 rex0 4313 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)
6160abf 4359 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅
6259, 61uneq12i 4119 . . . . . . 7 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪ ∅)
63 un0 4347 . . . . . . 7 (∅ ∪ ∅) = ∅
6462, 63eqtri 2752 . . . . . 6 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅
6564a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅)
6657, 65oveq12d 7371 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅))
67 subscl 27989 . . . . . . . . 9 ((𝑥 No ∧ 1s No ) → (𝑥 -s 1s ) ∈ No )
6835, 22, 67sylancl 586 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 -s 1s ) ∈ No )
6968adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 -s 1s ) ∈ No )
7031snelpw 5392 . . . . . . 7 ((𝑥 -s 1s ) ∈ No ↔ {(𝑥 -s 1s )} ∈ 𝒫 No )
7169, 70sylib 218 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} ∈ 𝒫 No )
72 nulssgt 27727 . . . . . 6 ({(𝑥 -s 1s )} ∈ 𝒫 No → {(𝑥 -s 1s )} <<s ∅)
7371, 72syl 17 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} <<s ∅)
7444snelpw 5392 . . . . . . 7 ( 0s No ↔ { 0s } ∈ 𝒫 No )
7521, 74mpbi 230 . . . . . 6 { 0s } ∈ 𝒫 No
76 nulssgt 27727 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
7775, 76mp1i 13 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → { 0s } <<s ∅)
78 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 = ({(𝑥 -s 1s )} |s ∅))
79 df-1s 27757 . . . . . 6 1s = ({ 0s } |s ∅)
8079a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 1s = ({ 0s } |s ∅))
8173, 77, 78, 80addsunif 27932 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})))
8235adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 No )
83 pncans 27999 . . . . . . 7 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
8482, 22, 83sylancl 586 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
8584sneqd 4591 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
8685oveq1d 7368 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
8766, 81, 863eqtr4d 2774 . . 3 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
8887ex 412 . 2 (𝑥 ∈ ℕ0s → (𝑥 = ({(𝑥 -s 1s )} |s ∅) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
895, 10, 15, 20, 30, 88n0sind 28248 1 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wrex 3053  cun 3903  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  (class class class)co 7353   No csur 27567   <<s csslt 27709   |s cscut 27711   0s c0s 27754   1s c1s 27755   +s cadds 27889   -s csubs 27949  0scnn0s 28229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-n0s 28231
This theorem is referenced by:  n0scut2  28250  n0ons  28251  n0sfincut  28269  zscut  28318  addhalfcut  28365
  Copyright terms: Public domain W3C validator