MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0scut Structured version   Visualization version   GIF version

Theorem n0scut 28232
Description: A cut form for non-negative surreal integers. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0scut (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))

Proof of Theorem n0scut
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑦 = 0s𝑦 = 0s )
2 oveq1 7396 . . . . 5 (𝑦 = 0s → (𝑦 -s 1s ) = ( 0s -s 1s ))
32sneqd 4603 . . . 4 (𝑦 = 0s → {(𝑦 -s 1s )} = {( 0s -s 1s )})
43oveq1d 7404 . . 3 (𝑦 = 0s → ({(𝑦 -s 1s )} |s ∅) = ({( 0s -s 1s )} |s ∅))
51, 4eqeq12d 2746 . 2 (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 0s = ({( 0s -s 1s )} |s ∅)))
6 id 22 . . 3 (𝑦 = 𝑥𝑦 = 𝑥)
7 oveq1 7396 . . . . 5 (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s ))
87sneqd 4603 . . . 4 (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s )})
98oveq1d 7404 . . 3 (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) = ({(𝑥 -s 1s )} |s ∅))
106, 9eqeq12d 2746 . 2 (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝑥 = ({(𝑥 -s 1s )} |s ∅)))
11 id 22 . . 3 (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s ))
12 oveq1 7396 . . . . 5 (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) = ((𝑥 +s 1s ) -s 1s ))
1312sneqd 4603 . . . 4 (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )} = {((𝑥 +s 1s ) -s 1s )})
1413oveq1d 7404 . . 3 (𝑦 = (𝑥 +s 1s ) → ({(𝑦 -s 1s )} |s ∅) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
1511, 14eqeq12d 2746 . 2 (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
16 id 22 . . 3 (𝑦 = 𝐴𝑦 = 𝐴)
17 oveq1 7396 . . . . 5 (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s ))
1817sneqd 4603 . . . 4 (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s )})
1918oveq1d 7404 . . 3 (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s ∅))
2016, 19eqeq12d 2746 . 2 (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
21 0sno 27744 . . . . . . 7 0s No
22 1sno 27745 . . . . . . 7 1s No
23 subscl 27972 . . . . . . 7 (( 0s No ∧ 1s No ) → ( 0s -s 1s ) ∈ No )
2421, 22, 23mp2an 692 . . . . . 6 ( 0s -s 1s ) ∈ No
2524a1i 11 . . . . 5 (⊤ → ( 0s -s 1s ) ∈ No )
2621a1i 11 . . . . . 6 (⊤ → 0s No )
2726sltm1d 28011 . . . . 5 (⊤ → ( 0s -s 1s ) <s 0s )
2825, 27cutneg 27751 . . . 4 (⊤ → ({( 0s -s 1s )} |s ∅) = 0s )
2928mptru 1547 . . 3 ({( 0s -s 1s )} |s ∅) = 0s
3029eqcomi 2739 . 2 0s = ({( 0s -s 1s )} |s ∅)
31 ovex 7422 . . . . . . . . . . 11 (𝑥 -s 1s ) ∈ V
32 oveq1 7396 . . . . . . . . . . . 12 (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) = ((𝑥 -s 1s ) +s 1s ))
3332eqeq2d 2741 . . . . . . . . . . 11 (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s )))
3431, 33rexsn 4648 . . . . . . . . . 10 (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s ))
35 n0sno 28222 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0s𝑥 No )
36 npcans 27985 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3735, 22, 36sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3837adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
3938eqeq2d 2741 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = ((𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥))
4034, 39bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
4140alrimiv 1927 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
42 absn 4611 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
4341, 42sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥})
4421elexi 3473 . . . . . . . . . . 11 0s ∈ V
45 oveq2 7397 . . . . . . . . . . . 12 (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s ))
4645eqeq2d 2741 . . . . . . . . . . 11 (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s )))
4744, 46rexsn 4648 . . . . . . . . . 10 (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s ))
4835addsridd 27878 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 0s ) = 𝑥)
4948adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 0s ) = 𝑥)
5049eqeq2d 2741 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = (𝑥 +s 0s ) ↔ 𝑎 = 𝑥))
5147, 50bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
5251alrimiv 1927 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
53 absn 4611 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
5452, 53sylibr 234 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥})
5543, 54uneq12d 4134 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥}))
56 unidm 4122 . . . . . 6 ({𝑥} ∪ {𝑥}) = {𝑥}
5755, 56eqtrdi 2781 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥})
58 rex0 4325 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )
5958abf 4371 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} = ∅
60 rex0 4325 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)
6160abf 4371 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅
6259, 61uneq12i 4131 . . . . . . 7 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪ ∅)
63 un0 4359 . . . . . . 7 (∅ ∪ ∅) = ∅
6462, 63eqtri 2753 . . . . . 6 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅
6564a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅)
6657, 65oveq12d 7407 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅))
67 subscl 27972 . . . . . . . . 9 ((𝑥 No ∧ 1s No ) → (𝑥 -s 1s ) ∈ No )
6835, 22, 67sylancl 586 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 -s 1s ) ∈ No )
6968adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 -s 1s ) ∈ No )
7031snelpw 5407 . . . . . . 7 ((𝑥 -s 1s ) ∈ No ↔ {(𝑥 -s 1s )} ∈ 𝒫 No )
7169, 70sylib 218 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} ∈ 𝒫 No )
72 nulssgt 27716 . . . . . 6 ({(𝑥 -s 1s )} ∈ 𝒫 No → {(𝑥 -s 1s )} <<s ∅)
7371, 72syl 17 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} <<s ∅)
7444snelpw 5407 . . . . . . 7 ( 0s No ↔ { 0s } ∈ 𝒫 No )
7521, 74mpbi 230 . . . . . 6 { 0s } ∈ 𝒫 No
76 nulssgt 27716 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
7775, 76mp1i 13 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → { 0s } <<s ∅)
78 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 = ({(𝑥 -s 1s )} |s ∅))
79 df-1s 27743 . . . . . 6 1s = ({ 0s } |s ∅)
8079a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 1s = ({ 0s } |s ∅))
8173, 77, 78, 80addsunif 27915 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})))
8235adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 No )
83 pncans 27982 . . . . . . 7 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
8482, 22, 83sylancl 586 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
8584sneqd 4603 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
8685oveq1d 7404 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
8766, 81, 863eqtr4d 2775 . . 3 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
8887ex 412 . 2 (𝑥 ∈ ℕ0s → (𝑥 = ({(𝑥 -s 1s )} |s ∅) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
895, 10, 15, 20, 30, 88n0sind 28231 1 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wrex 3054  cun 3914  c0 4298  𝒫 cpw 4565  {csn 4591   class class class wbr 5109  (class class class)co 7389   No csur 27557   <<s csslt 27698   |s cscut 27700   0s c0s 27740   1s c1s 27741   +s cadds 27872   -s csubs 27932  0scnn0s 28212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-nadd 8632  df-no 27560  df-slt 27561  df-bday 27562  df-sle 27663  df-sslt 27699  df-scut 27701  df-0s 27742  df-1s 27743  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec 27851  df-norec2 27862  df-adds 27873  df-negs 27933  df-subs 27934  df-n0s 28214
This theorem is referenced by:  n0scut2  28233  n0ons  28234  n0sfincut  28252  zscut  28301  addhalfcut  28340
  Copyright terms: Public domain W3C validator