Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . 3
⊢ (𝑦 = 0s → 𝑦 = 0s
) |
2 | | oveq1 7418 |
. . . . 5
⊢ (𝑦 = 0s → (𝑦 -s 1s ) =
( 0s -s 1s )) |
3 | 2 | sneqd 4639 |
. . . 4
⊢ (𝑦 = 0s → {(𝑦 -s 1s )}
= {( 0s -s 1s )}) |
4 | 3 | oveq1d 7426 |
. . 3
⊢ (𝑦 = 0s → ({(𝑦 -s 1s )}
|s ∅) = ({( 0s -s 1s )} |s
∅)) |
5 | 1, 4 | eqeq12d 2746 |
. 2
⊢ (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 0s = ({( 0s -s 1s )} |s
∅))) |
6 | | id 22 |
. . 3
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
7 | | oveq1 7418 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s
)) |
8 | 7 | sneqd 4639 |
. . . 4
⊢ (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s
)}) |
9 | 8 | oveq1d 7426 |
. . 3
⊢ (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) =
({(𝑥 -s
1s )} |s ∅)) |
10 | 6, 9 | eqeq12d 2746 |
. 2
⊢ (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 𝑥 = ({(𝑥 -s 1s )}
|s ∅))) |
11 | | id 22 |
. . 3
⊢ (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s
)) |
12 | | oveq1 7418 |
. . . . 5
⊢ (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) =
((𝑥 +s
1s ) -s 1s )) |
13 | 12 | sneqd 4639 |
. . . 4
⊢ (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )}
= {((𝑥 +s
1s ) -s 1s )}) |
14 | 13 | oveq1d 7426 |
. . 3
⊢ (𝑦 = (𝑥 +s 1s ) →
({(𝑦 -s
1s )} |s ∅) = ({((𝑥 +s 1s ) -s
1s )} |s ∅)) |
15 | 11, 14 | eqeq12d 2746 |
. 2
⊢ (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ (𝑥 +s
1s ) = ({((𝑥
+s 1s ) -s 1s )} |s
∅))) |
16 | | id 22 |
. . 3
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
17 | | oveq1 7418 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s
)) |
18 | 17 | sneqd 4639 |
. . . 4
⊢ (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s
)}) |
19 | 18 | oveq1d 7426 |
. . 3
⊢ (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) =
({(𝐴 -s
1s )} |s ∅)) |
20 | 16, 19 | eqeq12d 2746 |
. 2
⊢ (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅)
↔ 𝐴 = ({(𝐴 -s 1s )}
|s ∅))) |
21 | | 0sno 27564 |
. . . . . . . 8
⊢
0s ∈ No |
22 | | 1sno 27565 |
. . . . . . . 8
⊢
1s ∈ No |
23 | | subscl 27773 |
. . . . . . . 8
⊢ ((
0s ∈ No ∧ 1s
∈ No ) → ( 0s -s
1s ) ∈ No ) |
24 | 21, 22, 23 | mp2an 688 |
. . . . . . 7
⊢ (
0s -s 1s ) ∈ No
|
25 | 24 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ( 0s -s 1s ) ∈ No ) |
26 | 21 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 0s ∈ No ) |
27 | | 0slt1s 27567 |
. . . . . . . 8
⊢
0s <s 1s |
28 | | addslid 27690 |
. . . . . . . . 9
⊢ (
1s ∈ No → ( 0s
+s 1s ) = 1s ) |
29 | 22, 28 | ax-mp 5 |
. . . . . . . 8
⊢ (
0s +s 1s ) = 1s |
30 | 27, 29 | breqtrri 5174 |
. . . . . . 7
⊢
0s <s ( 0s +s 1s
) |
31 | 22 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 1s ∈ No ) |
32 | 26, 31, 26 | sltsubaddd 27795 |
. . . . . . 7
⊢ (⊤
→ (( 0s -s 1s ) <s 0s
↔ 0s <s ( 0s +s 1s
))) |
33 | 30, 32 | mpbiri 257 |
. . . . . 6
⊢ (⊤
→ ( 0s -s 1s ) <s 0s
) |
34 | 25, 26, 33 | ssltsn 27530 |
. . . . 5
⊢ (⊤
→ {( 0s -s 1s )} <<s {
0s }) |
35 | 21 | elexi 3492 |
. . . . . . . . 9
⊢
0s ∈ V |
36 | 35 | snelpw 5444 |
. . . . . . . 8
⊢ (
0s ∈ No ↔ { 0s }
∈ 𝒫 No ) |
37 | 21, 36 | mpbi 229 |
. . . . . . 7
⊢ {
0s } ∈ 𝒫 No
|
38 | | nulssgt 27536 |
. . . . . . 7
⊢ ({
0s } ∈ 𝒫 No → {
0s } <<s ∅) |
39 | 37, 38 | ax-mp 5 |
. . . . . 6
⊢ {
0s } <<s ∅ |
40 | 39 | a1i 11 |
. . . . 5
⊢ (⊤
→ { 0s } <<s ∅) |
41 | 34, 40 | cuteq0 27570 |
. . . 4
⊢ (⊤
→ ({( 0s -s 1s )} |s ∅) =
0s ) |
42 | 41 | mptru 1546 |
. . 3
⊢ ({(
0s -s 1s )} |s ∅) =
0s |
43 | 42 | eqcomi 2739 |
. 2
⊢
0s = ({( 0s -s 1s )} |s
∅) |
44 | | ovex 7444 |
. . . . . . . . . . 11
⊢ (𝑥 -s 1s )
∈ V |
45 | | oveq1 7418 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) =
((𝑥 -s
1s ) +s 1s )) |
46 | 45 | eqeq2d 2741 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s
1s ))) |
47 | 44, 46 | rexsn 4685 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )
↔ 𝑎 = ((𝑥 -s 1s )
+s 1s )) |
48 | | n0ssno 27936 |
. . . . . . . . . . . . . 14
⊢
ℕ0s ⊆ No
|
49 | 48 | sseli 3977 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ0s
→ 𝑥 ∈ No ) |
50 | | npcans 27781 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
((𝑥 -s
1s ) +s 1s ) = 𝑥) |
51 | 49, 22, 50 | sylancl 584 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0s
→ ((𝑥 -s
1s ) +s 1s ) = 𝑥) |
52 | 51 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ((𝑥
-s 1s ) +s 1s ) = 𝑥) |
53 | 52 | eqeq2d 2741 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑎 =
((𝑥 -s
1s ) +s 1s ) ↔ 𝑎 = 𝑥)) |
54 | 47, 53 | bitrid 282 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
55 | 54 | alrimiv 1928 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
56 | | absn 4645 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥)) |
57 | 55, 56 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
= {𝑥}) |
58 | | oveq2 7419 |
. . . . . . . . . . . 12
⊢ (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s
)) |
59 | 58 | eqeq2d 2741 |
. . . . . . . . . . 11
⊢ (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s
))) |
60 | 35, 59 | rexsn 4685 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s
)) |
61 | 49 | addsridd 27687 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 +s
0s ) = 𝑥) |
62 | 61 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 0s ) = 𝑥) |
63 | 62 | eqeq2d 2741 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑎 =
(𝑥 +s
0s ) ↔ 𝑎 =
𝑥)) |
64 | 60, 63 | bitrid 282 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
65 | 64 | alrimiv 1928 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
66 | | absn 4645 |
. . . . . . . 8
⊢ ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥)) |
67 | 65, 66 | sylibr 233 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {𝑎
∣ ∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥}) |
68 | 57, 67 | uneq12d 4163 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥})) |
69 | | unidm 4151 |
. . . . . 6
⊢ ({𝑥} ∪ {𝑥}) = {𝑥} |
70 | 68, 69 | eqtrdi 2786 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥}) |
71 | | rex0 4356 |
. . . . . . . . 9
⊢ ¬
∃𝑏 ∈ ∅
𝑎 = (𝑏 +s 1s
) |
72 | 71 | abf 4401 |
. . . . . . . 8
⊢ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} =
∅ |
73 | | rex0 4356 |
. . . . . . . . 9
⊢ ¬
∃𝑏 ∈ ∅
𝑎 = (𝑥 +s 𝑏) |
74 | 73 | abf 4401 |
. . . . . . . 8
⊢ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅ |
75 | 72, 74 | uneq12i 4160 |
. . . . . . 7
⊢ ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪
∅) |
76 | | un0 4389 |
. . . . . . 7
⊢ (∅
∪ ∅) = ∅ |
77 | 75, 76 | eqtri 2758 |
. . . . . 6
⊢ ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅ |
78 | 77 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({𝑎
∣ ∃𝑏 ∈
∅ 𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ ∅
𝑎 = (𝑥 +s 𝑏)}) = ∅) |
79 | 70, 78 | oveq12d 7429 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (({𝑎
∣ ∃𝑏 ∈
{(𝑥 -s
1s )}𝑎 = (𝑏 +s 1s )}
∪ {𝑎 ∣
∃𝑏 ∈ {
0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅)) |
80 | | subscl 27773 |
. . . . . . . . 9
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
(𝑥 -s
1s ) ∈ No ) |
81 | 49, 22, 80 | sylancl 584 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 -s
1s ) ∈ No ) |
82 | 81 | adantr 479 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
-s 1s ) ∈ No
) |
83 | 44 | snelpw 5444 |
. . . . . . 7
⊢ ((𝑥 -s 1s )
∈ No ↔ {(𝑥 -s 1s )} ∈
𝒫 No ) |
84 | 82, 83 | sylib 217 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {(𝑥
-s 1s )} ∈ 𝒫 No
) |
85 | | nulssgt 27536 |
. . . . . 6
⊢ ({(𝑥 -s 1s )}
∈ 𝒫 No → {(𝑥 -s 1s )} <<s
∅) |
86 | 84, 85 | syl 17 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {(𝑥
-s 1s )} <<s ∅) |
87 | 39 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → { 0s } <<s ∅) |
88 | | simpr 483 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 𝑥 =
({(𝑥 -s
1s )} |s ∅)) |
89 | | df-1s 27563 |
. . . . . 6
⊢
1s = ({ 0s } |s ∅) |
90 | 89 | a1i 11 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 1s = ({ 0s } |s
∅)) |
91 | 86, 87, 88, 90 | addsunif 27724 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}))) |
92 | 49 | adantr 479 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → 𝑥
∈ No ) |
93 | | pncans 27779 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
((𝑥 +s
1s ) -s 1s ) = 𝑥) |
94 | 92, 22, 93 | sylancl 584 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ((𝑥
+s 1s ) -s 1s ) = 𝑥) |
95 | 94 | sneqd 4639 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → {((𝑥
+s 1s ) -s 1s )} = {𝑥}) |
96 | 95 | oveq1d 7426 |
. . . 4
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → ({((𝑥
+s 1s ) -s 1s )} |s ∅) =
({𝑥} |s
∅)) |
97 | 79, 91, 96 | 3eqtr4d 2780 |
. . 3
⊢ ((𝑥 ∈ ℕ0s
∧ 𝑥 = ({(𝑥 -s 1s )}
|s ∅)) → (𝑥
+s 1s ) = ({((𝑥 +s 1s ) -s
1s )} |s ∅)) |
98 | 97 | ex 411 |
. 2
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 = ({(𝑥 -s 1s )}
|s ∅) → (𝑥
+s 1s ) = ({((𝑥 +s 1s ) -s
1s )} |s ∅))) |
99 | 5, 10, 15, 20, 43, 98 | n0sind 27942 |
1
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 = ({(𝐴 -s 1s )}
|s ∅)) |