MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0scut Structured version   Visualization version   GIF version

Theorem n0scut 27958
Description: A cut form for surreal naturals. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0scut (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))

Proof of Theorem n0scut
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑦 = 0s𝑦 = 0s )
2 oveq1 7419 . . . . 5 (𝑦 = 0s → (𝑦 -s 1s ) = ( 0s -s 1s ))
32sneqd 4640 . . . 4 (𝑦 = 0s → {(𝑦 -s 1s )} = {( 0s -s 1s )})
43oveq1d 7427 . . 3 (𝑦 = 0s → ({(𝑦 -s 1s )} |s ∅) = ({( 0s -s 1s )} |s ∅))
51, 4eqeq12d 2747 . 2 (𝑦 = 0s → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 0s = ({( 0s -s 1s )} |s ∅)))
6 id 22 . . 3 (𝑦 = 𝑥𝑦 = 𝑥)
7 oveq1 7419 . . . . 5 (𝑦 = 𝑥 → (𝑦 -s 1s ) = (𝑥 -s 1s ))
87sneqd 4640 . . . 4 (𝑦 = 𝑥 → {(𝑦 -s 1s )} = {(𝑥 -s 1s )})
98oveq1d 7427 . . 3 (𝑦 = 𝑥 → ({(𝑦 -s 1s )} |s ∅) = ({(𝑥 -s 1s )} |s ∅))
106, 9eqeq12d 2747 . 2 (𝑦 = 𝑥 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝑥 = ({(𝑥 -s 1s )} |s ∅)))
11 id 22 . . 3 (𝑦 = (𝑥 +s 1s ) → 𝑦 = (𝑥 +s 1s ))
12 oveq1 7419 . . . . 5 (𝑦 = (𝑥 +s 1s ) → (𝑦 -s 1s ) = ((𝑥 +s 1s ) -s 1s ))
1312sneqd 4640 . . . 4 (𝑦 = (𝑥 +s 1s ) → {(𝑦 -s 1s )} = {((𝑥 +s 1s ) -s 1s )})
1413oveq1d 7427 . . 3 (𝑦 = (𝑥 +s 1s ) → ({(𝑦 -s 1s )} |s ∅) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
1511, 14eqeq12d 2747 . 2 (𝑦 = (𝑥 +s 1s ) → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
16 id 22 . . 3 (𝑦 = 𝐴𝑦 = 𝐴)
17 oveq1 7419 . . . . 5 (𝑦 = 𝐴 → (𝑦 -s 1s ) = (𝐴 -s 1s ))
1817sneqd 4640 . . . 4 (𝑦 = 𝐴 → {(𝑦 -s 1s )} = {(𝐴 -s 1s )})
1918oveq1d 7427 . . 3 (𝑦 = 𝐴 → ({(𝑦 -s 1s )} |s ∅) = ({(𝐴 -s 1s )} |s ∅))
2016, 19eqeq12d 2747 . 2 (𝑦 = 𝐴 → (𝑦 = ({(𝑦 -s 1s )} |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
21 0sno 27579 . . . . . . . 8 0s No
22 1sno 27580 . . . . . . . 8 1s No
23 subscl 27788 . . . . . . . 8 (( 0s No ∧ 1s No ) → ( 0s -s 1s ) ∈ No )
2421, 22, 23mp2an 689 . . . . . . 7 ( 0s -s 1s ) ∈ No
2524a1i 11 . . . . . 6 (⊤ → ( 0s -s 1s ) ∈ No )
2621a1i 11 . . . . . 6 (⊤ → 0s No )
27 0slt1s 27582 . . . . . . . 8 0s <s 1s
28 addslid 27705 . . . . . . . . 9 ( 1s No → ( 0s +s 1s ) = 1s )
2922, 28ax-mp 5 . . . . . . . 8 ( 0s +s 1s ) = 1s
3027, 29breqtrri 5175 . . . . . . 7 0s <s ( 0s +s 1s )
3122a1i 11 . . . . . . . 8 (⊤ → 1s No )
3226, 31, 26sltsubaddd 27810 . . . . . . 7 (⊤ → (( 0s -s 1s ) <s 0s ↔ 0s <s ( 0s +s 1s )))
3330, 32mpbiri 258 . . . . . 6 (⊤ → ( 0s -s 1s ) <s 0s )
3425, 26, 33ssltsn 27545 . . . . 5 (⊤ → {( 0s -s 1s )} <<s { 0s })
3521elexi 3493 . . . . . . . . 9 0s ∈ V
3635snelpw 5445 . . . . . . . 8 ( 0s No ↔ { 0s } ∈ 𝒫 No )
3721, 36mpbi 229 . . . . . . 7 { 0s } ∈ 𝒫 No
38 nulssgt 27551 . . . . . . 7 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3937, 38ax-mp 5 . . . . . 6 { 0s } <<s ∅
4039a1i 11 . . . . 5 (⊤ → { 0s } <<s ∅)
4134, 40cuteq0 27585 . . . 4 (⊤ → ({( 0s -s 1s )} |s ∅) = 0s )
4241mptru 1547 . . 3 ({( 0s -s 1s )} |s ∅) = 0s
4342eqcomi 2740 . 2 0s = ({( 0s -s 1s )} |s ∅)
44 ovex 7445 . . . . . . . . . . 11 (𝑥 -s 1s ) ∈ V
45 oveq1 7419 . . . . . . . . . . . 12 (𝑏 = (𝑥 -s 1s ) → (𝑏 +s 1s ) = ((𝑥 -s 1s ) +s 1s ))
4645eqeq2d 2742 . . . . . . . . . . 11 (𝑏 = (𝑥 -s 1s ) → (𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s )))
4744, 46rexsn 4686 . . . . . . . . . 10 (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = ((𝑥 -s 1s ) +s 1s ))
48 n0ssno 27951 . . . . . . . . . . . . . 14 0s No
4948sseli 3978 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0s𝑥 No )
50 npcans 27796 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5149, 22, 50sylancl 585 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5251adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 -s 1s ) +s 1s ) = 𝑥)
5352eqeq2d 2742 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = ((𝑥 -s 1s ) +s 1s ) ↔ 𝑎 = 𝑥))
5447, 53bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5554alrimiv 1929 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
56 absn 4646 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s ) ↔ 𝑎 = 𝑥))
5755, 56sylibr 233 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} = {𝑥})
58 oveq2 7420 . . . . . . . . . . . 12 (𝑏 = 0s → (𝑥 +s 𝑏) = (𝑥 +s 0s ))
5958eqeq2d 2742 . . . . . . . . . . 11 (𝑏 = 0s → (𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s )))
6035, 59rexsn 4686 . . . . . . . . . 10 (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = (𝑥 +s 0s ))
6149addsridd 27702 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 0s ) = 𝑥)
6261adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 0s ) = 𝑥)
6362eqeq2d 2742 . . . . . . . . . 10 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑎 = (𝑥 +s 0s ) ↔ 𝑎 = 𝑥))
6460, 63bitrid 283 . . . . . . . . 9 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6564alrimiv 1929 . . . . . . . 8 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
66 absn 4646 . . . . . . . 8 ({𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥} ↔ ∀𝑎(∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏) ↔ 𝑎 = 𝑥))
6765, 66sylibr 233 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)} = {𝑥})
6857, 67uneq12d 4164 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = ({𝑥} ∪ {𝑥}))
69 unidm 4152 . . . . . 6 ({𝑥} ∪ {𝑥}) = {𝑥}
7068, 69eqtrdi 2787 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) = {𝑥})
71 rex0 4357 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )
7271abf 4402 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} = ∅
73 rex0 4357 . . . . . . . . 9 ¬ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)
7473abf 4402 . . . . . . . 8 {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)} = ∅
7572, 74uneq12i 4161 . . . . . . 7 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = (∅ ∪ ∅)
76 un0 4390 . . . . . . 7 (∅ ∪ ∅) = ∅
7775, 76eqtri 2759 . . . . . 6 ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅
7877a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)}) = ∅)
7970, 78oveq12d 7430 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})) = ({𝑥} |s ∅))
80 subscl 27788 . . . . . . . . 9 ((𝑥 No ∧ 1s No ) → (𝑥 -s 1s ) ∈ No )
8149, 22, 80sylancl 585 . . . . . . . 8 (𝑥 ∈ ℕ0s → (𝑥 -s 1s ) ∈ No )
8281adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 -s 1s ) ∈ No )
8344snelpw 5445 . . . . . . 7 ((𝑥 -s 1s ) ∈ No ↔ {(𝑥 -s 1s )} ∈ 𝒫 No )
8482, 83sylib 217 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} ∈ 𝒫 No )
85 nulssgt 27551 . . . . . 6 ({(𝑥 -s 1s )} ∈ 𝒫 No → {(𝑥 -s 1s )} <<s ∅)
8684, 85syl 17 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {(𝑥 -s 1s )} <<s ∅)
8739a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → { 0s } <<s ∅)
88 simpr 484 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 = ({(𝑥 -s 1s )} |s ∅))
89 df-1s 27578 . . . . . 6 1s = ({ 0s } |s ∅)
9089a1i 11 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 1s = ({ 0s } |s ∅))
9186, 87, 88, 90addsunif 27739 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = (({𝑎 ∣ ∃𝑏 ∈ {(𝑥 -s 1s )}𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ { 0s }𝑎 = (𝑥 +s 𝑏)}) |s ({𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑏 +s 1s )} ∪ {𝑎 ∣ ∃𝑏 ∈ ∅ 𝑎 = (𝑥 +s 𝑏)})))
9249adantr 480 . . . . . . 7 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → 𝑥 No )
93 pncans 27794 . . . . . . 7 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9492, 22, 93sylancl 585 . . . . . 6 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9594sneqd 4640 . . . . 5 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
9695oveq1d 7427 . . . 4 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
9779, 91, 963eqtr4d 2781 . . 3 ((𝑥 ∈ ℕ0s𝑥 = ({(𝑥 -s 1s )} |s ∅)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
9897ex 412 . 2 (𝑥 ∈ ℕ0s → (𝑥 = ({(𝑥 -s 1s )} |s ∅) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅)))
995, 10, 15, 20, 43, 98n0sind 27957 1 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wtru 1541  wcel 2105  {cab 2708  wrex 3069  cun 3946  c0 4322  𝒫 cpw 4602  {csn 4628   class class class wbr 5148  (class class class)co 7412   No csur 27394   <s cslt 27395   <<s csslt 27533   |s cscut 27535   0s c0s 27575   1s c1s 27576   +s cadds 27696   -s csubs 27749  0scnn0s 27944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-nadd 8671  df-no 27397  df-slt 27398  df-bday 27399  df-sle 27499  df-sslt 27534  df-scut 27536  df-0s 27577  df-1s 27578  df-made 27594  df-old 27595  df-left 27597  df-right 27598  df-norec 27675  df-norec2 27686  df-adds 27697  df-negs 27750  df-subs 27751  df-n0s 27946
This theorem is referenced by:  n0ons  27959
  Copyright terms: Public domain W3C validator