Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfaiota2 Structured version   Visualization version   GIF version

Theorem dfaiota2 47077
Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
dfaiota2 (℩'𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfaiota2
StepHypRef Expression
1 df-aiota 47076 . 2 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 absn 4611 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
32abbii 2797 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
43inteqi 4916 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
51, 4eqtri 2753 1 (℩'𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  {cab 2708  {csn 4591   cint 4912  ℩'caiota 47074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-ral 3046  df-rex 3055  df-sn 4592  df-int 4913  df-aiota 47076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator