Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfaiota2 Structured version   Visualization version   GIF version

Theorem dfaiota2 46245
Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
dfaiota2 (℩'𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfaiota2
StepHypRef Expression
1 df-aiota 46244 . 2 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 absn 4638 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
32abbii 2794 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
43inteqi 4944 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
51, 4eqtri 2752 1 (℩'𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1531   = wceq 1533  {cab 2701  {csn 4620   cint 4940  ℩'caiota 46242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-ral 3054  df-rex 3063  df-sn 4621  df-int 4941  df-aiota 46244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator