Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota2 | Structured version Visualization version GIF version |
Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
dfaiota2 | ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aiota 44464 | . 2 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
2 | absn 4576 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | 2 | abbii 2809 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 3 | inteqi 4880 | . 2 ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
5 | 1, 4 | eqtri 2766 | 1 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 {cab 2715 {csn 4558 ∩ cint 4876 ℩'caiota 44462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-sn 4559 df-int 4877 df-aiota 44464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |