![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota2 | Structured version Visualization version GIF version |
Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in [Quine] p. 56. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
dfaiota2 | ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aiota 41976 | . 2 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
2 | absn 4417 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
3 | 2 | abbii 2944 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 3 | inteqi 4703 | . 2 ⊢ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
5 | 1, 4 | eqtri 2849 | 1 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1654 = wceq 1656 {cab 2811 {csn 4399 ∩ cint 4699 ℩'caiota 41974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-sn 4400 df-int 4700 df-aiota 41976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |