Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgelem Structured version   Visualization version   GIF version

Theorem supxrgelem 43470
Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgelem.xph 𝑥𝜑
supxrgelem.a (𝜑𝐴 ⊆ ℝ*)
supxrgelem.b (𝜑𝐵 ∈ ℝ*)
supxrgelem.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrgelem (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgelem
StepHypRef Expression
1 supxrgelem.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 13006 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 482 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
5 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
65eqcomd 2744 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
76adantl 483 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
84, 7breqtrd 5130 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
9 simpl 484 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
10 1rp 12874 . . . . . . . 8 1 ∈ ℝ+
11 nfcv 2906 . . . . . . . . . 10 𝑥1
12 supxrgelem.xph . . . . . . . . . . . 12 𝑥𝜑
13 nfv 1918 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1412, 13nfan 1903 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
15 nfv 1918 . . . . . . . . . . 11 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 1)
1614, 15nfim 1900 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
17 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
1817anbi2d 630 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
19 oveq2 7360 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 1))
2019breq2d 5116 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 1)))
2120rexbidv 3174 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2218, 21imbi12d 345 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))))
23 supxrgelem.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
2411, 16, 22, 23vtoclgf 3522 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2510, 24ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2610, 25mpan2 690 . . . . . . 7 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2726adantr 482 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
28 mnfxr 11171 . . . . . . . . . . 11 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ ∈ ℝ*)
30 supxrgelem.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3130sselda 3943 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
32313adant3 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ∈ ℝ*)
33 supxrcl 13189 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3430, 33syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
35343ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
36 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < (𝑦 +𝑒 1))
37 simpr 486 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
3831adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
39 ngtmnft 13040 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4137, 40mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
4241oveq1d 7367 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = (-∞ +𝑒 1))
43 1xr 11173 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ∈ ℝ*)
45 1re 11114 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
46 renepnf 11162 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → 1 ≠ +∞)
4745, 46ax-mp 5 . . . . . . . . . . . . . . . 16 1 ≠ +∞
4847a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ≠ +∞)
49 xaddmnf2 13103 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5044, 48, 49syl2anc 585 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 1) = -∞)
5142, 50eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
52513adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
5336, 52breqtrd 5130 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
54 nltmnf 13005 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐵 < -∞)
5655adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
57563ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
5853, 57condan 817 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < 𝑦)
5930adantr 482 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
60 simpr 486 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
61 supxrub 13198 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6259, 60, 61syl2anc 585 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
63623adant3 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6429, 32, 35, 58, 63xrltletrd 13035 . . . . . . . . 9 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < sup(𝐴, ℝ*, < ))
65643exp 1120 . . . . . . . 8 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6665adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6766rexlimdv 3149 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < )))
6827, 67mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
69 simpr 486 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
70 nltpnft 13038 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7134, 70syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7271adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7369, 72mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7473notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7568, 74jca 513 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7634adantr 482 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
77 xrrebnd 13042 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7876, 77syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7975, 78mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
80 simpl 484 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
81 simpr 486 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8234adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
831adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ*)
84 xrltnle 11181 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8582, 83, 84syl2anc 585 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8685adantlr 714 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8781, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 766 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
8928a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ∈ ℝ*)
9088, 34syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
9188, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ*)
92 mnfle 13010 . . . . . . . . . . . . . 14 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
9334, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
9493ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ≤ sup(𝐴, ℝ*, < ))
95 simpr 486 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9689, 90, 91, 94, 95xrlelttrd 13034 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ < 𝐵)
97 id 22 . . . . . . . . . . . . . 14 (𝜑𝜑)
9810a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ+)
9997, 98, 25syl2anc 585 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10099ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10113ad2ant1 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 ∈ ℝ*)
10243a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 1 ∈ ℝ*)
10332, 102jca 513 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*))
104 xaddcl 13113 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑦 +𝑒 1) ∈ ℝ*)
105103, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ∈ ℝ*)
106 pnfxr 11168 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → +∞ ∈ ℝ*)
108 simp3 1139 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < (𝑦 +𝑒 1))
10931, 43, 104sylancl 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ∈ ℝ*)
110 pnfge 13006 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑒 1) ∈ ℝ* → (𝑦 +𝑒 1) ≤ +∞)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ≤ +∞)
1121113adant3 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ≤ +∞)
113101, 105, 107, 108, 112xrltletrd 13035 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < +∞)
1141133exp 1120 . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞)))
115114rexlimdv 3149 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
11688, 115syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
117100, 116mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
11896, 117jca 513 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
119 xrrebnd 13042 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
12091, 119syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
121118, 120mpbird 257 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
122 simpr 486 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
123122adantr 482 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
124121, 123resubcld 11542 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
12526, 115mpd 15 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
126125ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
12796, 126jca 513 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
128127, 120mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
129123, 128posdifd 11701 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
13095, 129mpbid 231 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
131124, 130elrpd 12909 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
132 ovex 7385 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
133 nfcv 2906 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
134 nfv 1918 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
13512, 134nfan 1903 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
136 nfv 1918 . . . . . . . . . 10 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))
137135, 136nfim 1900 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
138 eleq1 2826 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
139138anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
140 oveq2 7360 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
141140breq2d 5116 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
142141rexbidv 3174 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
143139, 142imbi12d 345 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))))
144133, 137, 143, 23vtoclgf 3522 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
145132, 144ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
14688, 131, 145syl2anc 585 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
147 ltpnf 12996 . . . . . . . . . . . . 13 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) < +∞)
148147adantr 482 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < +∞)
149 id 22 . . . . . . . . . . . . . 14 (𝑦 = +∞ → 𝑦 = +∞)
150149eqcomd 2744 . . . . . . . . . . . . 13 (𝑦 = +∞ → +∞ = 𝑦)
151150adantl 483 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → +∞ = 𝑦)
152148, 151breqtrd 5130 . . . . . . . . . . 11 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
153152adantll 713 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
154153ad5ant15 758 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
155 simplll 774 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵))
156 simpl 484 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
15788, 41sylanl1 679 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
158157adantlr 714 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
159 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
160 oveq1 7359 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
161160adantl 483 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
162128, 123resubcld 11542 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
163162rexrd 11164 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
164163ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
165 renepnf 11162 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
166124, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
167166ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
168 xaddmnf2 13103 . . . . . . . . . . . . . . . . . 18 (((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ* ∧ (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
169164, 167, 168syl2anc 585 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
170161, 169eqtrd 2778 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
171159, 170breqtrd 5130 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < -∞)
172156, 158, 171syl2anc 585 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
17355ad5antr 733 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
174172, 173condan 817 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → -∞ < 𝑦)
175174adantr 482 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → -∞ < 𝑦)
176 simp3 1139 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ 𝑦 = +∞)
177313adant3 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
178 nltpnft 13038 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
179177, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
180176, 179mtbid 324 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ ¬ 𝑦 < +∞)
181180notnotrd 133 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
1821813adant1r 1178 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
183182ad5ant135 1369 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
184175, 183jca 513 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (-∞ < 𝑦𝑦 < +∞))
18531adantlr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
186185ad5ant13 756 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
187 xrrebnd 13042 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
188186, 187syl 17 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
189184, 188mpbird 257 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ)
190 simplr 768 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
191121ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 ∈ ℝ)
192 simpr 486 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
193124adantr 482 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
194 rexadd 13106 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
195192, 193, 194syl2anc 585 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
196192, 193readdcld 11143 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
197195, 196eqeltrd 2839 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
198197adantr 482 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
199 simpr 486 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
200191, 198, 191, 199ltsub1dd 11726 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵))
201121recnd 11142 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℂ)
202201subidd 11459 . . . . . . . . . . . . . 14 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵𝐵) = 0)
203202ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) = 0)
204201adantr 482 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐵 ∈ ℂ)
205192recnd 11142 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
206122recnd 11142 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
207206ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
208205, 207subcld 11471 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 − sup(𝐴, ℝ*, < )) ∈ ℂ)
209205, 204, 207addsub12d 11494 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
210195, 209eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
211204, 208, 210mvrladdd 11527 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
212211adantr 482 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
213203, 212breq12d 5117 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
214200, 213mpbid 231 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 0 < (𝑦 − sup(𝐴, ℝ*, < )))
215123ad2antrr 725 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
216 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝑦 ∈ ℝ)
217215, 216posdifd 11701 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (sup(𝐴, ℝ*, < ) < 𝑦 ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
218214, 217mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
219155, 189, 190, 218syl21anc 837 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
220154, 219pm2.61dan 812 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
221220ex 414 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → (𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → sup(𝐴, ℝ*, < ) < 𝑦))
222221reximdva 3164 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
223146, 222mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22480, 87, 223syl2anc 585 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22559, 33syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
22631, 225xrlenltd 11180 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
22762, 226mpbid 231 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
228227ralrimiva 3142 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
229 ralnex 3074 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
230228, 229sylib 217 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
231230ad2antrr 725 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
232224, 231condan 817 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2339, 79, 232syl2anc 585 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2348, 233pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wne 2942  wral 3063  wrex 3072  Vcvv 3444  wss 3909   class class class wbr 5104  (class class class)co 7352  supcsup 9335  cc 11008  cr 11009  0cc0 11010  1c1 11011   + caddc 11013  +∞cpnf 11145  -∞cmnf 11146  *cxr 11147   < clt 11148  cle 11149  cmin 11344  +crp 12870   +𝑒 cxad 12986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-po 5544  df-so 5545  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7914  df-2nd 7915  df-er 8607  df-en 8843  df-dom 8844  df-sdom 8845  df-sup 9337  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-rp 12871  df-xadd 12989
This theorem is referenced by:  supxrge  43471
  Copyright terms: Public domain W3C validator