Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgelem Structured version   Visualization version   GIF version

Theorem supxrgelem 45461
Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgelem.xph 𝑥𝜑
supxrgelem.a (𝜑𝐴 ⊆ ℝ*)
supxrgelem.b (𝜑𝐵 ∈ ℝ*)
supxrgelem.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrgelem (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgelem
StepHypRef Expression
1 supxrgelem.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 13031 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
5 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
65eqcomd 2739 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
76adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
84, 7breqtrd 5119 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
9 simpl 482 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
10 1rp 12896 . . . . . . . 8 1 ∈ ℝ+
11 nfcv 2895 . . . . . . . . . 10 𝑥1
12 supxrgelem.xph . . . . . . . . . . . 12 𝑥𝜑
13 nfv 1915 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1412, 13nfan 1900 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
15 nfv 1915 . . . . . . . . . . 11 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 1)
1614, 15nfim 1897 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
17 eleq1 2821 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
1817anbi2d 630 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
19 oveq2 7360 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 1))
2019breq2d 5105 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 1)))
2120rexbidv 3157 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2218, 21imbi12d 344 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))))
23 supxrgelem.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
2411, 16, 22, 23vtoclgf 3522 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2510, 24ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2610, 25mpan2 691 . . . . . . 7 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2726adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
28 mnfxr 11176 . . . . . . . . . . 11 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ ∈ ℝ*)
30 supxrgelem.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3130sselda 3930 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
32313adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ∈ ℝ*)
33 supxrcl 13216 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3430, 33syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
35343ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
36 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < (𝑦 +𝑒 1))
37 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
3831adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
39 ngtmnft 13067 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4137, 40mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
4241oveq1d 7367 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = (-∞ +𝑒 1))
43 1xr 11178 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ∈ ℝ*)
45 1re 11119 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
46 renepnf 11167 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → 1 ≠ +∞)
4745, 46ax-mp 5 . . . . . . . . . . . . . . . 16 1 ≠ +∞
4847a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ≠ +∞)
49 xaddmnf2 13130 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5044, 48, 49syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 1) = -∞)
5142, 50eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
52513adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
5336, 52breqtrd 5119 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
54 nltmnf 13030 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐵 < -∞)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
57563ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
5853, 57condan 817 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < 𝑦)
5930adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
60 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
61 supxrub 13225 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6259, 60, 61syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
63623adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6429, 32, 35, 58, 63xrltletrd 13062 . . . . . . . . 9 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < sup(𝐴, ℝ*, < ))
65643exp 1119 . . . . . . . 8 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6665adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6766rexlimdv 3132 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < )))
6827, 67mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
69 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
70 nltpnft 13065 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7134, 70syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7271adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7369, 72mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7473notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7568, 74jca 511 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7634adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
77 xrrebnd 13069 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7876, 77syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7975, 78mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
80 simpl 482 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
81 simpr 484 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8234adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
831adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ*)
84 xrltnle 11186 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8582, 83, 84syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8685adantlr 715 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8781, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 766 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
8928a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ∈ ℝ*)
9088, 34syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
9188, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ*)
92 mnfle 13036 . . . . . . . . . . . . . 14 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
9334, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
9493ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ≤ sup(𝐴, ℝ*, < ))
95 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9689, 90, 91, 94, 95xrlelttrd 13061 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ < 𝐵)
97 id 22 . . . . . . . . . . . . . 14 (𝜑𝜑)
9810a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ+)
9997, 98, 25syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10099ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10113ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 ∈ ℝ*)
10243a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 1 ∈ ℝ*)
10332, 102jca 511 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*))
104 xaddcl 13140 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑦 +𝑒 1) ∈ ℝ*)
105103, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ∈ ℝ*)
106 pnfxr 11173 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → +∞ ∈ ℝ*)
108 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < (𝑦 +𝑒 1))
10931, 43, 104sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ∈ ℝ*)
110 pnfge 13031 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑒 1) ∈ ℝ* → (𝑦 +𝑒 1) ≤ +∞)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ≤ +∞)
1121113adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ≤ +∞)
113101, 105, 107, 108, 112xrltletrd 13062 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < +∞)
1141133exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞)))
115114rexlimdv 3132 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
11688, 115syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
117100, 116mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
11896, 117jca 511 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
119 xrrebnd 13069 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
12091, 119syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
121118, 120mpbird 257 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
122 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
123122adantr 480 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
124121, 123resubcld 11552 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
12526, 115mpd 15 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
126125ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
12796, 126jca 511 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
128127, 120mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
129123, 128posdifd 11711 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
13095, 129mpbid 232 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
131124, 130elrpd 12933 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
132 ovex 7385 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
133 nfcv 2895 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
134 nfv 1915 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
13512, 134nfan 1900 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
136 nfv 1915 . . . . . . . . . 10 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))
137135, 136nfim 1897 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
138 eleq1 2821 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
139138anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
140 oveq2 7360 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
141140breq2d 5105 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
142141rexbidv 3157 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
143139, 142imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))))
144133, 137, 143, 23vtoclgf 3522 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
145132, 144ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
14688, 131, 145syl2anc 584 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
147 ltpnf 13021 . . . . . . . . . . . . 13 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) < +∞)
148147adantr 480 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < +∞)
149 id 22 . . . . . . . . . . . . . 14 (𝑦 = +∞ → 𝑦 = +∞)
150149eqcomd 2739 . . . . . . . . . . . . 13 (𝑦 = +∞ → +∞ = 𝑦)
151150adantl 481 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → +∞ = 𝑦)
152148, 151breqtrd 5119 . . . . . . . . . . 11 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
153152adantll 714 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
154153ad5ant15 758 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
155 simplll 774 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵))
156 simpl 482 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
15788, 41sylanl1 680 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
158157adantlr 715 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
159 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
160 oveq1 7359 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
161160adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
162128, 123resubcld 11552 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
163162rexrd 11169 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
164163ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
165 renepnf 11167 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
166124, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
167166ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
168 xaddmnf2 13130 . . . . . . . . . . . . . . . . . 18 (((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ* ∧ (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
169164, 167, 168syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
170161, 169eqtrd 2768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
171159, 170breqtrd 5119 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < -∞)
172156, 158, 171syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
17355ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
174172, 173condan 817 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → -∞ < 𝑦)
175174adantr 480 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → -∞ < 𝑦)
176 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ 𝑦 = +∞)
177313adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
178 nltpnft 13065 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
179177, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
180176, 179mtbid 324 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ ¬ 𝑦 < +∞)
181180notnotrd 133 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
1821813adant1r 1178 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
183182ad5ant135 1370 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
184175, 183jca 511 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (-∞ < 𝑦𝑦 < +∞))
18531adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
186185ad5ant13 756 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
187 xrrebnd 13069 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
188186, 187syl 17 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
189184, 188mpbird 257 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ)
190 simplr 768 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
191121ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 ∈ ℝ)
192 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
193124adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
194 rexadd 13133 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
195192, 193, 194syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
196192, 193readdcld 11148 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
197195, 196eqeltrd 2833 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
199 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
200191, 198, 191, 199ltsub1dd 11736 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵))
201121recnd 11147 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℂ)
202201subidd 11467 . . . . . . . . . . . . . 14 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵𝐵) = 0)
203202ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) = 0)
204201adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐵 ∈ ℂ)
205192recnd 11147 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
206122recnd 11147 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
207206ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
208205, 207subcld 11479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 − sup(𝐴, ℝ*, < )) ∈ ℂ)
209205, 204, 207addsub12d 11502 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
210195, 209eqtrd 2768 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
211204, 208, 210mvrladdd 11537 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
212211adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
213203, 212breq12d 5106 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
214200, 213mpbid 232 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 0 < (𝑦 − sup(𝐴, ℝ*, < )))
215123ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
216 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝑦 ∈ ℝ)
217215, 216posdifd 11711 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (sup(𝐴, ℝ*, < ) < 𝑦 ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
218214, 217mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
219155, 189, 190, 218syl21anc 837 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
220154, 219pm2.61dan 812 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
221220ex 412 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → (𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → sup(𝐴, ℝ*, < ) < 𝑦))
222221reximdva 3146 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
223146, 222mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22480, 87, 223syl2anc 584 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22559, 33syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
22631, 225xrlenltd 11185 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
22762, 226mpbid 232 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
228227ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
229 ralnex 3059 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
230228, 229sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
231230ad2antrr 726 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
232224, 231condan 817 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2339, 79, 232syl2anc 584 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2348, 233pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5093  (class class class)co 7352  supcsup 9331  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152   < clt 11153  cle 11154  cmin 11351  +crp 12892   +𝑒 cxad 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-rp 12893  df-xadd 13014
This theorem is referenced by:  supxrge  45462
  Copyright terms: Public domain W3C validator