Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrgelem Structured version   Visualization version   GIF version

Theorem supxrgelem 45375
Description: If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
supxrgelem.xph 𝑥𝜑
supxrgelem.a (𝜑𝐴 ⊆ ℝ*)
supxrgelem.b (𝜑𝐵 ∈ ℝ*)
supxrgelem.y ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
Assertion
Ref Expression
supxrgelem (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supxrgelem
StepHypRef Expression
1 supxrgelem.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
2 pnfge 13026 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
31, 2syl 17 . . . 4 (𝜑𝐵 ≤ +∞)
43adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ +∞)
5 id 22 . . . . 5 (sup(𝐴, ℝ*, < ) = +∞ → sup(𝐴, ℝ*, < ) = +∞)
65eqcomd 2737 . . . 4 (sup(𝐴, ℝ*, < ) = +∞ → +∞ = sup(𝐴, ℝ*, < ))
76adantl 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = sup(𝐴, ℝ*, < ))
84, 7breqtrd 5117 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
9 simpl 482 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
10 1rp 12891 . . . . . . . 8 1 ∈ ℝ+
11 nfcv 2894 . . . . . . . . . 10 𝑥1
12 supxrgelem.xph . . . . . . . . . . . 12 𝑥𝜑
13 nfv 1915 . . . . . . . . . . . 12 𝑥1 ∈ ℝ+
1412, 13nfan 1900 . . . . . . . . . . 11 𝑥(𝜑 ∧ 1 ∈ ℝ+)
15 nfv 1915 . . . . . . . . . . 11 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 1)
1614, 15nfim 1897 . . . . . . . . . 10 𝑥((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
17 eleq1 2819 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 ∈ ℝ+ ↔ 1 ∈ ℝ+))
1817anbi2d 630 . . . . . . . . . . 11 (𝑥 = 1 → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ 1 ∈ ℝ+)))
19 oveq2 7354 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 1))
2019breq2d 5103 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 1)))
2120rexbidv 3156 . . . . . . . . . . 11 (𝑥 = 1 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2218, 21imbi12d 344 . . . . . . . . . 10 (𝑥 = 1 → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))))
23 supxrgelem.y . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥))
2411, 16, 22, 23vtoclgf 3524 . . . . . . . . 9 (1 ∈ ℝ+ → ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1)))
2510, 24ax-mp 5 . . . . . . . 8 ((𝜑 ∧ 1 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2610, 25mpan2 691 . . . . . . 7 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
2726adantr 480 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
28 mnfxr 11166 . . . . . . . . . . 11 -∞ ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ ∈ ℝ*)
30 supxrgelem.a . . . . . . . . . . . 12 (𝜑𝐴 ⊆ ℝ*)
3130sselda 3934 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
32313adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ∈ ℝ*)
33 supxrcl 13211 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
3430, 33syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
35343ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
36 simpl3 1194 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < (𝑦 +𝑒 1))
37 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → ¬ -∞ < 𝑦)
3831adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 ∈ ℝ*)
39 ngtmnft 13062 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 = -∞ ↔ ¬ -∞ < 𝑦))
4137, 40mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
4241oveq1d 7361 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = (-∞ +𝑒 1))
43 1xr 11168 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4443a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ∈ ℝ*)
45 1re 11109 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
46 renepnf 11157 . . . . . . . . . . . . . . . . 17 (1 ∈ ℝ → 1 ≠ +∞)
4745, 46ax-mp 5 . . . . . . . . . . . . . . . 16 1 ≠ +∞
4847a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 1 ≠ +∞)
49 xaddmnf2 13125 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
5044, 48, 49syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (-∞ +𝑒 1) = -∞)
5142, 50eqtrd 2766 . . . . . . . . . . . . 13 (((𝜑𝑦𝐴) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
52513adantl3 1169 . . . . . . . . . . . 12 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → (𝑦 +𝑒 1) = -∞)
5336, 52breqtrd 5117 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
54 nltmnf 13025 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝐵 < -∞)
5655adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
57563ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
5853, 57condan 817 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < 𝑦)
5930adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
60 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → 𝑦𝐴)
61 supxrub 13220 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6259, 60, 61syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
63623adant3 1132 . . . . . . . . . 10 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝑦 ≤ sup(𝐴, ℝ*, < ))
6429, 32, 35, 58, 63xrltletrd 13057 . . . . . . . . 9 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → -∞ < sup(𝐴, ℝ*, < ))
65643exp 1119 . . . . . . . 8 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6665adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < ))))
6766rexlimdv 3131 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → -∞ < sup(𝐴, ℝ*, < )))
6827, 67mpd 15 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
69 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
70 nltpnft 13060 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7134, 70syl 17 . . . . . . . 8 (𝜑 → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7271adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
7369, 72mtbid 324 . . . . . 6 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
7473notnotrd 133 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
7568, 74jca 511 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
7634adantr 480 . . . . 5 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
77 xrrebnd 13064 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7876, 77syl 17 . . . 4 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
7975, 78mpbird 257 . . 3 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
80 simpl 482 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ))
81 simpr 484 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ 𝐵 ≤ sup(𝐴, ℝ*, < ))
8234adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
831adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → 𝐵 ∈ ℝ*)
84 xrltnle 11176 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8582, 83, 84syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8685adantlr 715 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )))
8781, 86mpbird 257 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → sup(𝐴, ℝ*, < ) < 𝐵)
88 simpll 766 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝜑)
8928a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ∈ ℝ*)
9088, 34syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
9188, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ*)
92 mnfle 13031 . . . . . . . . . . . . . 14 (sup(𝐴, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐴, ℝ*, < ))
9334, 92syl 17 . . . . . . . . . . . . 13 (𝜑 → -∞ ≤ sup(𝐴, ℝ*, < ))
9493ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ ≤ sup(𝐴, ℝ*, < ))
95 simpr 484 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) < 𝐵)
9689, 90, 91, 94, 95xrlelttrd 13056 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → -∞ < 𝐵)
97 id 22 . . . . . . . . . . . . . 14 (𝜑𝜑)
9810a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ+)
9997, 98, 25syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10099ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1))
10113ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 ∈ ℝ*)
10243a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 1 ∈ ℝ*)
10332, 102jca 511 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*))
104 xaddcl 13135 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑦 +𝑒 1) ∈ ℝ*)
105103, 104syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ∈ ℝ*)
106 pnfxr 11163 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → +∞ ∈ ℝ*)
108 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < (𝑦 +𝑒 1))
10931, 43, 104sylancl 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ∈ ℝ*)
110 pnfge 13026 . . . . . . . . . . . . . . . . . 18 ((𝑦 +𝑒 1) ∈ ℝ* → (𝑦 +𝑒 1) ≤ +∞)
111109, 110syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴) → (𝑦 +𝑒 1) ≤ +∞)
1121113adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → (𝑦 +𝑒 1) ≤ +∞)
113101, 105, 107, 108, 112xrltletrd 13057 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴𝐵 < (𝑦 +𝑒 1)) → 𝐵 < +∞)
1141133exp 1119 . . . . . . . . . . . . . 14 (𝜑 → (𝑦𝐴 → (𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞)))
115114rexlimdv 3131 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
11688, 115syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 1) → 𝐵 < +∞))
117100, 116mpd 15 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
11896, 117jca 511 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
119 xrrebnd 13064 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
12091, 119syl 17 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 ∈ ℝ ↔ (-∞ < 𝐵𝐵 < +∞)))
121118, 120mpbird 257 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
122 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
123122adantr 480 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → sup(𝐴, ℝ*, < ) ∈ ℝ)
124121, 123resubcld 11542 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
12526, 115mpd 15 . . . . . . . . . . . . 13 (𝜑𝐵 < +∞)
126125ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 < +∞)
12796, 126jca 511 . . . . . . . . . . 11 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (-∞ < 𝐵𝐵 < +∞))
128127, 120mpbird 257 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℝ)
129123, 128posdifd 11701 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (sup(𝐴, ℝ*, < ) < 𝐵 ↔ 0 < (𝐵 − sup(𝐴, ℝ*, < ))))
13095, 129mpbid 232 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 0 < (𝐵 − sup(𝐴, ℝ*, < )))
131124, 130elrpd 12928 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
132 ovex 7379 . . . . . . . 8 (𝐵 − sup(𝐴, ℝ*, < )) ∈ V
133 nfcv 2894 . . . . . . . . 9 𝑥(𝐵 − sup(𝐴, ℝ*, < ))
134 nfv 1915 . . . . . . . . . . 11 𝑥(𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+
13512, 134nfan 1900 . . . . . . . . . 10 𝑥(𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)
136 nfv 1915 . . . . . . . . . 10 𝑥𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))
137135, 136nfim 1897 . . . . . . . . 9 𝑥((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
138 eleq1 2819 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑥 ∈ ℝ+ ↔ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+))
139138anbi2d 630 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → ((𝜑𝑥 ∈ ℝ+) ↔ (𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+)))
140 oveq2 7354 . . . . . . . . . . . 12 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝑦 +𝑒 𝑥) = (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
141140breq2d 5103 . . . . . . . . . . 11 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (𝐵 < (𝑦 +𝑒 𝑥) ↔ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
142141rexbidv 3156 . . . . . . . . . 10 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥) ↔ ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
143139, 142imbi12d 344 . . . . . . . . 9 (𝑥 = (𝐵 − sup(𝐴, ℝ*, < )) → (((𝜑𝑥 ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 𝑥)) ↔ ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))))
144133, 137, 143, 23vtoclgf 3524 . . . . . . . 8 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ V → ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
145132, 144ax-mp 5 . . . . . . 7 ((𝜑 ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ+) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
14688, 131, 145syl2anc 584 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
147 ltpnf 13016 . . . . . . . . . . . . 13 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) < +∞)
148147adantr 480 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < +∞)
149 id 22 . . . . . . . . . . . . . 14 (𝑦 = +∞ → 𝑦 = +∞)
150149eqcomd 2737 . . . . . . . . . . . . 13 (𝑦 = +∞ → +∞ = 𝑦)
151150adantl 481 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → +∞ = 𝑦)
152148, 151breqtrd 5117 . . . . . . . . . . 11 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
153152adantll 714 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
154153ad5ant15 758 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
155 simplll 774 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵))
156 simpl 482 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))))
15788, 41sylanl1 680 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
158157adantlr 715 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝑦 = -∞)
159 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
160 oveq1 7353 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
161160adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
162128, 123resubcld 11542 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
163162rexrd 11159 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
164163ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ*)
165 renepnf 11157 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
166124, 165syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
167166ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞)
168 xaddmnf2 13125 . . . . . . . . . . . . . . . . . 18 (((𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ* ∧ (𝐵 − sup(𝐴, ℝ*, < )) ≠ +∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
169164, 167, 168syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (-∞ +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
170161, 169eqtrd 2766 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = -∞)
171159, 170breqtrd 5117 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ 𝑦 = -∞) → 𝐵 < -∞)
172156, 158, 171syl2anc 584 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → 𝐵 < -∞)
17355ad5antr 734 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ -∞ < 𝑦) → ¬ 𝐵 < -∞)
174172, 173condan 817 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → -∞ < 𝑦)
175174adantr 480 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → -∞ < 𝑦)
176 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ 𝑦 = +∞)
177313adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
178 nltpnft 13060 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
179177, 178syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → (𝑦 = +∞ ↔ ¬ 𝑦 < +∞))
180176, 179mtbid 324 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → ¬ ¬ 𝑦 < +∞)
181180notnotrd 133 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
1821813adant1r 1178 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴 ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
183182ad5ant135 1370 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 < +∞)
184175, 183jca 511 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (-∞ < 𝑦𝑦 < +∞))
18531adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
186185ad5ant13 756 . . . . . . . . . . . 12 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ*)
187 xrrebnd 13064 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
188186, 187syl 17 . . . . . . . . . . 11 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → (𝑦 ∈ ℝ ↔ (-∞ < 𝑦𝑦 < +∞)))
189184, 188mpbird 257 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ ℝ)
190 simplr 768 . . . . . . . . . 10 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
191121ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 ∈ ℝ)
192 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
193124adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ)
194 rexadd 13128 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ (𝐵 − sup(𝐴, ℝ*, < )) ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
195192, 193, 194syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))))
196192, 193readdcld 11138 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
197195, 196eqeltrd 2831 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
198197adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) ∈ ℝ)
199 simpr 484 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))))
200191, 198, 191, 199ltsub1dd 11726 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵))
201121recnd 11137 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → 𝐵 ∈ ℂ)
202201subidd 11457 . . . . . . . . . . . . . 14 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (𝐵𝐵) = 0)
203202ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (𝐵𝐵) = 0)
204201adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝐵 ∈ ℂ)
205192recnd 11137 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
206122recnd 11137 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
207206ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℂ)
208205, 207subcld 11469 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 − sup(𝐴, ℝ*, < )) ∈ ℂ)
209205, 204, 207addsub12d 11492 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 + (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
210195, 209eqtrd 2766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) = (𝐵 + (𝑦 − sup(𝐴, ℝ*, < ))))
211204, 208, 210mvrladdd 11527 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
212211adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) = (𝑦 − sup(𝐴, ℝ*, < )))
213203, 212breq12d 5104 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → ((𝐵𝐵) < ((𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) − 𝐵) ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
214200, 213mpbid 232 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 0 < (𝑦 − sup(𝐴, ℝ*, < )))
215123ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) ∈ ℝ)
216 simplr 768 . . . . . . . . . . . 12 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → 𝑦 ∈ ℝ)
217215, 216posdifd 11701 . . . . . . . . . . 11 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → (sup(𝐴, ℝ*, < ) < 𝑦 ↔ 0 < (𝑦 − sup(𝐴, ℝ*, < ))))
218214, 217mpbird 257 . . . . . . . . . 10 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦 ∈ ℝ) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
219155, 189, 190, 218syl21anc 837 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) ∧ ¬ 𝑦 = +∞) → sup(𝐴, ℝ*, < ) < 𝑦)
220154, 219pm2.61dan 812 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) ∧ 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < )))) → sup(𝐴, ℝ*, < ) < 𝑦)
221220ex 412 . . . . . . 7 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) ∧ 𝑦𝐴) → (𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → sup(𝐴, ℝ*, < ) < 𝑦))
222221reximdva 3145 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → (∃𝑦𝐴 𝐵 < (𝑦 +𝑒 (𝐵 − sup(𝐴, ℝ*, < ))) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦))
223146, 222mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) < 𝐵) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22480, 87, 223syl2anc 584 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
22559, 33syl 17 . . . . . . . . 9 ((𝜑𝑦𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
22631, 225xrlenltd 11175 . . . . . . . 8 ((𝜑𝑦𝐴) → (𝑦 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝑦))
22762, 226mpbid 232 . . . . . . 7 ((𝜑𝑦𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝑦)
228227ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦)
229 ralnex 3058 . . . . . 6 (∀𝑦𝐴 ¬ sup(𝐴, ℝ*, < ) < 𝑦 ↔ ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
230228, 229sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
231230ad2antrr 726 . . . 4 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ ¬ 𝐵 ≤ sup(𝐴, ℝ*, < )) → ¬ ∃𝑦𝐴 sup(𝐴, ℝ*, < ) < 𝑦)
232224, 231condan 817 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2339, 79, 232syl2anc 584 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
2348, 233pm2.61dan 812 1 (𝜑𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3902   class class class wbr 5091  (class class class)co 7346  supcsup 9324  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144  cmin 11341  +crp 12887   +𝑒 cxad 13006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-rp 12888  df-xadd 13009
This theorem is referenced by:  supxrge  45376
  Copyright terms: Public domain W3C validator