| Step | Hyp | Ref
| Expression |
| 1 | | simp-6l 786 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋)) |
| 2 | | simp-7l 788 |
. . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 3 | | simp-4r 783 |
. . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤 ∈ 𝑈) |
| 4 | | simplr 768 |
. . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢 ∈ 𝑈) |
| 5 | | ustincl 24146 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑢 ∈ 𝑈) → (𝑤 ∩ 𝑢) ∈ 𝑈) |
| 6 | 2, 3, 4, 5 | syl3anc 1373 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤 ∩ 𝑢) ∈ 𝑈) |
| 7 | | ineq12 4190 |
. . . . . . . . . . 11
⊢ ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))) |
| 8 | | inimasn 6145 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ V → ((𝑤 ∩ 𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))) |
| 9 | 8 | elv 3464 |
. . . . . . . . . . 11
⊢ ((𝑤 ∩ 𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})) |
| 10 | 7, 9 | eqtr4di 2788 |
. . . . . . . . . 10
⊢ ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) |
| 11 | 10 | ad4ant24 754 |
. . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) |
| 12 | | imaeq1 6042 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑤 ∩ 𝑢) → (𝑥 “ {𝑝}) = ((𝑤 ∩ 𝑢) “ {𝑝})) |
| 13 | 12 | rspceeqv 3624 |
. . . . . . . . 9
⊢ (((𝑤 ∩ 𝑢) ∈ 𝑈 ∧ (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) → ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) |
| 14 | 6, 11, 13 | syl2anc 584 |
. . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) |
| 15 | | vex 3463 |
. . . . . . . . . . 11
⊢ 𝑎 ∈ V |
| 16 | 15 | inex1 5287 |
. . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ∈ V |
| 17 | | utopustuq.1 |
. . . . . . . . . . 11
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 18 | 17 | ustuqtoplem 24178 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑎 ∩ 𝑏) ∈ V) → ((𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝}))) |
| 19 | 16, 18 | mpan2 691 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝}))) |
| 20 | 19 | biimpar 477 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 21 | 1, 14, 20 | syl2anc 584 |
. . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 22 | 17 | ustuqtoplem 24178 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 23 | 22 | elvd 3465 |
. . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) |
| 24 | 23 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ (𝑁‘𝑝)) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
| 25 | 24 | ad5ant13 756 |
. . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) |
| 26 | 21, 25 | r19.29a 3148 |
. . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 27 | 17 | ustuqtoplem 24178 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 28 | 27 | elvd 3465 |
. . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
| 29 | 28 | biimpa 476 |
. . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
| 31 | 26, 30 | r19.29a 3148 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 32 | 31 | ralrimiva 3132 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 33 | 32 | ralrimiva 3132 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑎 ∈ (𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) |
| 34 | | fvex 6889 |
. . . 4
⊢ (𝑁‘𝑝) ∈ V |
| 35 | | inficl 9437 |
. . . 4
⊢ ((𝑁‘𝑝) ∈ V → (∀𝑎 ∈ (𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝))) |
| 36 | 34, 35 | ax-mp 5 |
. . 3
⊢
(∀𝑎 ∈
(𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝)) |
| 37 | 33, 36 | sylib 218 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝)) |
| 38 | | eqimss 4017 |
. 2
⊢
((fi‘(𝑁‘𝑝)) = (𝑁‘𝑝) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
| 39 | 37, 38 | syl 17 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |