MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop2 Structured version   Visualization version   GIF version

Theorem ustuqtop2 24157
Description: Lemma for ustuqtop 24161. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop2
Dummy variables 𝑤 𝑎 𝑏 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 786 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
2 simp-7l 788 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simp-4r 783 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤𝑈)
4 simplr 768 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢𝑈)
5 ustincl 24123 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑢𝑈) → (𝑤𝑢) ∈ 𝑈)
62, 3, 4, 5syl3anc 1373 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤𝑢) ∈ 𝑈)
7 ineq12 4162 . . . . . . . . . . 11 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
8 inimasn 6103 . . . . . . . . . . . 12 (𝑝 ∈ V → ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
98elv 3441 . . . . . . . . . . 11 ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))
107, 9eqtr4di 2784 . . . . . . . . . 10 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
1110ad4ant24 754 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
12 imaeq1 6003 . . . . . . . . . 10 (𝑥 = (𝑤𝑢) → (𝑥 “ {𝑝}) = ((𝑤𝑢) “ {𝑝}))
1312rspceeqv 3595 . . . . . . . . 9 (((𝑤𝑢) ∈ 𝑈 ∧ (𝑎𝑏) = ((𝑤𝑢) “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
146, 11, 13syl2anc 584 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
15 vex 3440 . . . . . . . . . . 11 𝑎 ∈ V
1615inex1 5253 . . . . . . . . . 10 (𝑎𝑏) ∈ V
17 utopustuq.1 . . . . . . . . . . 11 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 24154 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑎𝑏) ∈ V) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
1916, 18mpan2 691 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
2019biimpar 477 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
211, 14, 20syl2anc 584 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2217ustuqtoplem 24154 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2322elvd 3442 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2423biimpa 476 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2524ad5ant13 756 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2621, 25r19.29a 3140 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2717ustuqtoplem 24154 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2827elvd 3442 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2928biimpa 476 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3029adantr 480 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3126, 30r19.29a 3140 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → (𝑎𝑏) ∈ (𝑁𝑝))
3231ralrimiva 3124 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
3332ralrimiva 3124 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
34 fvex 6835 . . . 4 (𝑁𝑝) ∈ V
35 inficl 9309 . . . 4 ((𝑁𝑝) ∈ V → (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝)))
3634, 35ax-mp 5 . . 3 (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝))
3733, 36sylib 218 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) = (𝑁𝑝))
38 eqimss 3988 . 2 ((fi‘(𝑁𝑝)) = (𝑁𝑝) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
3937, 38syl 17 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  {csn 4573  cmpt 5170  ran crn 5615  cima 5617  cfv 6481  ficfi 9294  UnifOncust 24115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295  df-ust 24116
This theorem is referenced by:  ustuqtop  24161  utopsnneiplem  24162
  Copyright terms: Public domain W3C validator