MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop2 Structured version   Visualization version   GIF version

Theorem ustuqtop2 24267
Description: Lemma for ustuqtop 24271. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop2
Dummy variables 𝑤 𝑎 𝑏 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 787 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
2 simp-7l 789 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simp-4r 784 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤𝑈)
4 simplr 769 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢𝑈)
5 ustincl 24232 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑢𝑈) → (𝑤𝑢) ∈ 𝑈)
62, 3, 4, 5syl3anc 1370 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤𝑢) ∈ 𝑈)
7 ineq12 4223 . . . . . . . . . . 11 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
8 inimasn 6178 . . . . . . . . . . . 12 (𝑝 ∈ V → ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
98elv 3483 . . . . . . . . . . 11 ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))
107, 9eqtr4di 2793 . . . . . . . . . 10 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
1110ad4ant24 754 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
12 imaeq1 6075 . . . . . . . . . 10 (𝑥 = (𝑤𝑢) → (𝑥 “ {𝑝}) = ((𝑤𝑢) “ {𝑝}))
1312rspceeqv 3645 . . . . . . . . 9 (((𝑤𝑢) ∈ 𝑈 ∧ (𝑎𝑏) = ((𝑤𝑢) “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
146, 11, 13syl2anc 584 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
15 vex 3482 . . . . . . . . . . 11 𝑎 ∈ V
1615inex1 5323 . . . . . . . . . 10 (𝑎𝑏) ∈ V
17 utopustuq.1 . . . . . . . . . . 11 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 24264 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑎𝑏) ∈ V) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
1916, 18mpan2 691 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
2019biimpar 477 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
211, 14, 20syl2anc 584 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2217ustuqtoplem 24264 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2322elvd 3484 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2423biimpa 476 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2524ad5ant13 757 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2621, 25r19.29a 3160 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2717ustuqtoplem 24264 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2827elvd 3484 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2928biimpa 476 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3029adantr 480 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3126, 30r19.29a 3160 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → (𝑎𝑏) ∈ (𝑁𝑝))
3231ralrimiva 3144 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
3332ralrimiva 3144 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
34 fvex 6920 . . . 4 (𝑁𝑝) ∈ V
35 inficl 9463 . . . 4 ((𝑁𝑝) ∈ V → (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝)))
3634, 35ax-mp 5 . . 3 (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝))
3733, 36sylib 218 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) = (𝑁𝑝))
38 eqimss 4054 . 2 ((fi‘(𝑁𝑝)) = (𝑁𝑝) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
3937, 38syl 17 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  {csn 4631  cmpt 5231  ran crn 5690  cima 5692  cfv 6563  ficfi 9448  UnifOncust 24224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-en 8985  df-fin 8988  df-fi 9449  df-ust 24225
This theorem is referenced by:  ustuqtop  24271  utopsnneiplem  24272
  Copyright terms: Public domain W3C validator