| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp-6l 787 | . . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋)) | 
| 2 |  | simp-7l 789 | . . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) | 
| 3 |  | simp-4r 784 | . . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤 ∈ 𝑈) | 
| 4 |  | simplr 769 | . . . . . . . . . 10
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢 ∈ 𝑈) | 
| 5 |  | ustincl 24216 | . . . . . . . . . 10
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑢 ∈ 𝑈) → (𝑤 ∩ 𝑢) ∈ 𝑈) | 
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤 ∩ 𝑢) ∈ 𝑈) | 
| 7 |  | ineq12 4215 | . . . . . . . . . . 11
⊢ ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))) | 
| 8 |  | inimasn 6176 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ V → ((𝑤 ∩ 𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))) | 
| 9 | 8 | elv 3485 | . . . . . . . . . . 11
⊢ ((𝑤 ∩ 𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})) | 
| 10 | 7, 9 | eqtr4di 2795 | . . . . . . . . . 10
⊢ ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) | 
| 11 | 10 | ad4ant24 754 | . . . . . . . . 9
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) | 
| 12 |  | imaeq1 6073 | . . . . . . . . . 10
⊢ (𝑥 = (𝑤 ∩ 𝑢) → (𝑥 “ {𝑝}) = ((𝑤 ∩ 𝑢) “ {𝑝})) | 
| 13 | 12 | rspceeqv 3645 | . . . . . . . . 9
⊢ (((𝑤 ∩ 𝑢) ∈ 𝑈 ∧ (𝑎 ∩ 𝑏) = ((𝑤 ∩ 𝑢) “ {𝑝})) → ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) | 
| 14 | 6, 11, 13 | syl2anc 584 | . . . . . . . 8
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) | 
| 15 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑎 ∈ V | 
| 16 | 15 | inex1 5317 | . . . . . . . . . 10
⊢ (𝑎 ∩ 𝑏) ∈ V | 
| 17 |  | utopustuq.1 | . . . . . . . . . . 11
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | 
| 18 | 17 | ustuqtoplem 24248 | . . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑎 ∩ 𝑏) ∈ V) → ((𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝}))) | 
| 19 | 16, 18 | mpan2 691 | . . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝}))) | 
| 20 | 19 | biimpar 477 | . . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ ∃𝑥 ∈ 𝑈 (𝑎 ∩ 𝑏) = (𝑥 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 21 | 1, 14, 20 | syl2anc 584 | . . . . . . 7
⊢
((((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢 ∈ 𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 22 | 17 | ustuqtoplem 24248 | . . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 23 | 22 | elvd 3486 | . . . . . . . . 9
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑏 ∈ (𝑁‘𝑝) ↔ ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝}))) | 
| 24 | 23 | biimpa 476 | . . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑏 ∈ (𝑁‘𝑝)) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) | 
| 25 | 24 | ad5ant13 757 | . . . . . . 7
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢 ∈ 𝑈 𝑏 = (𝑢 “ {𝑝})) | 
| 26 | 21, 25 | r19.29a 3162 | . . . . . 6
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 27 | 17 | ustuqtoplem 24248 | . . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) | 
| 28 | 27 | elvd 3486 | . . . . . . . 8
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) | 
| 29 | 28 | biimpa 476 | . . . . . . 7
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) | 
| 31 | 26, 30 | r19.29a 3162 | . . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑏 ∈ (𝑁‘𝑝)) → (𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 32 | 31 | ralrimiva 3146 | . . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 33 | 32 | ralrimiva 3146 | . . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑎 ∈ (𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝)) | 
| 34 |  | fvex 6919 | . . . 4
⊢ (𝑁‘𝑝) ∈ V | 
| 35 |  | inficl 9465 | . . . 4
⊢ ((𝑁‘𝑝) ∈ V → (∀𝑎 ∈ (𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝))) | 
| 36 | 34, 35 | ax-mp 5 | . . 3
⊢
(∀𝑎 ∈
(𝑁‘𝑝)∀𝑏 ∈ (𝑁‘𝑝)(𝑎 ∩ 𝑏) ∈ (𝑁‘𝑝) ↔ (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝)) | 
| 37 | 33, 36 | sylib 218 | . 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) = (𝑁‘𝑝)) | 
| 38 |  | eqimss 4042 | . 2
⊢
((fi‘(𝑁‘𝑝)) = (𝑁‘𝑝) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) | 
| 39 | 37, 38 | syl 17 | 1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |