MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop2 Structured version   Visualization version   GIF version

Theorem ustuqtop2 23394
Description: Lemma for ustuqtop 23398. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop2
Dummy variables 𝑤 𝑎 𝑏 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 784 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
2 simp-7l 786 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simp-4r 781 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤𝑈)
4 simplr 766 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢𝑈)
5 ustincl 23359 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑢𝑈) → (𝑤𝑢) ∈ 𝑈)
62, 3, 4, 5syl3anc 1370 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤𝑢) ∈ 𝑈)
7 ineq12 4141 . . . . . . . . . . 11 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
8 inimasn 6059 . . . . . . . . . . . 12 (𝑝 ∈ V → ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
98elv 3438 . . . . . . . . . . 11 ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))
107, 9eqtr4di 2796 . . . . . . . . . 10 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
1110ad4ant24 751 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
12 imaeq1 5964 . . . . . . . . . 10 (𝑥 = (𝑤𝑢) → (𝑥 “ {𝑝}) = ((𝑤𝑢) “ {𝑝}))
1312rspceeqv 3575 . . . . . . . . 9 (((𝑤𝑢) ∈ 𝑈 ∧ (𝑎𝑏) = ((𝑤𝑢) “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
146, 11, 13syl2anc 584 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
15 vex 3436 . . . . . . . . . . 11 𝑎 ∈ V
1615inex1 5241 . . . . . . . . . 10 (𝑎𝑏) ∈ V
17 utopustuq.1 . . . . . . . . . . 11 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 23391 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑎𝑏) ∈ V) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
1916, 18mpan2 688 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
2019biimpar 478 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
211, 14, 20syl2anc 584 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2217ustuqtoplem 23391 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2322elvd 3439 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2423biimpa 477 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2524ad5ant13 754 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2621, 25r19.29a 3218 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2717ustuqtoplem 23391 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2827elvd 3439 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2928biimpa 477 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3029adantr 481 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3126, 30r19.29a 3218 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → (𝑎𝑏) ∈ (𝑁𝑝))
3231ralrimiva 3103 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
3332ralrimiva 3103 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
34 fvex 6787 . . . 4 (𝑁𝑝) ∈ V
35 inficl 9184 . . . 4 ((𝑁𝑝) ∈ V → (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝)))
3634, 35ax-mp 5 . . 3 (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝))
3733, 36sylib 217 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) = (𝑁𝑝))
38 eqimss 3977 . 2 ((fi‘(𝑁𝑝)) = (𝑁𝑝) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
3937, 38syl 17 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  {csn 4561  cmpt 5157  ran crn 5590  cima 5592  cfv 6433  ficfi 9169  UnifOncust 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-en 8734  df-fin 8737  df-fi 9170  df-ust 23352
This theorem is referenced by:  ustuqtop  23398  utopsnneiplem  23399
  Copyright terms: Public domain W3C validator