MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop2 Structured version   Visualization version   GIF version

Theorem ustuqtop2 22827
Description: Lemma for ustuqtop 22831. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop2
Dummy variables 𝑤 𝑎 𝑏 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-6l 786 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
2 simp-7l 788 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
3 simp-4r 783 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑤𝑈)
4 simplr 768 . . . . . . . . . 10 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → 𝑢𝑈)
5 ustincl 22792 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑢𝑈) → (𝑤𝑢) ∈ 𝑈)
62, 3, 4, 5syl3anc 1368 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑤𝑢) ∈ 𝑈)
7 ineq12 4159 . . . . . . . . . . 11 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
8 inimasn 5986 . . . . . . . . . . . 12 (𝑝 ∈ V → ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝})))
98elv 3476 . . . . . . . . . . 11 ((𝑤𝑢) “ {𝑝}) = ((𝑤 “ {𝑝}) ∩ (𝑢 “ {𝑝}))
107, 9syl6eqr 2874 . . . . . . . . . 10 ((𝑎 = (𝑤 “ {𝑝}) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
1110ad4ant24 753 . . . . . . . . 9 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) = ((𝑤𝑢) “ {𝑝}))
12 imaeq1 5897 . . . . . . . . . 10 (𝑥 = (𝑤𝑢) → (𝑥 “ {𝑝}) = ((𝑤𝑢) “ {𝑝}))
1312rspceeqv 3615 . . . . . . . . 9 (((𝑤𝑢) ∈ 𝑈 ∧ (𝑎𝑏) = ((𝑤𝑢) “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
146, 11, 13syl2anc 587 . . . . . . . 8 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝}))
15 vex 3474 . . . . . . . . . . 11 𝑎 ∈ V
1615inex1 5194 . . . . . . . . . 10 (𝑎𝑏) ∈ V
17 utopustuq.1 . . . . . . . . . . 11 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 22824 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑎𝑏) ∈ V) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
1916, 18mpan2 690 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑎𝑏) ∈ (𝑁𝑝) ↔ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})))
2019biimpar 481 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ ∃𝑥𝑈 (𝑎𝑏) = (𝑥 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
211, 14, 20syl2anc 587 . . . . . . 7 ((((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) ∧ 𝑢𝑈) ∧ 𝑏 = (𝑢 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2217ustuqtoplem 22824 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ V) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2322elvd 3477 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑏 ∈ (𝑁𝑝) ↔ ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝})))
2423biimpa 480 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2524ad5ant13 756 . . . . . . 7 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑢𝑈 𝑏 = (𝑢 “ {𝑝}))
2621, 25r19.29a 3275 . . . . . 6 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (𝑎𝑏) ∈ (𝑁𝑝))
2717ustuqtoplem 22824 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2827elvd 3477 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2928biimpa 480 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3029adantr 484 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
3126, 30r19.29a 3275 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑏 ∈ (𝑁𝑝)) → (𝑎𝑏) ∈ (𝑁𝑝))
3231ralrimiva 3170 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
3332ralrimiva 3170 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝))
34 fvex 6656 . . . 4 (𝑁𝑝) ∈ V
35 inficl 8865 . . . 4 ((𝑁𝑝) ∈ V → (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝)))
3634, 35ax-mp 5 . . 3 (∀𝑎 ∈ (𝑁𝑝)∀𝑏 ∈ (𝑁𝑝)(𝑎𝑏) ∈ (𝑁𝑝) ↔ (fi‘(𝑁𝑝)) = (𝑁𝑝))
3733, 36sylib 221 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) = (𝑁𝑝))
38 eqimss 3999 . 2 ((fi‘(𝑁𝑝)) = (𝑁𝑝) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
3937, 38syl 17 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  wrex 3127  Vcvv 3471  cin 3909  wss 3910  {csn 4540  cmpt 5119  ran crn 5529  cima 5531  cfv 6328  ficfi 8850  UnifOncust 22784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-fin 8488  df-fi 8851  df-ust 22785
This theorem is referenced by:  ustuqtop  22831  utopsnneiplem  22832
  Copyright terms: Public domain W3C validator