Step | Hyp | Ref
| Expression |
1 | | ghmabl.f |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
2 | | ghmabl.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
3 | | ghmabl.y |
. . 3
⊢ 𝑌 = (Base‘𝐻) |
4 | | ghmabl.p |
. . 3
⊢ + =
(+g‘𝐺) |
5 | | ghmabl.q |
. . 3
⊢ ⨣ =
(+g‘𝐻) |
6 | | ghmabl.1 |
. . 3
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
7 | | ghmcmn.3 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
8 | | cmnmnd 19317 |
. . . 4
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
10 | 1, 2, 3, 4, 5, 6, 9 | mhmmnd 18612 |
. 2
⊢ (𝜑 → 𝐻 ∈ Mnd) |
11 | | simp-6l 783 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝜑) |
12 | 11, 7 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝐺 ∈ CMnd) |
13 | | simp-4r 780 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝑎 ∈ 𝑋) |
14 | | simplr 765 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → 𝑏 ∈ 𝑋) |
15 | 2, 4 | cmncom 19318 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ CMnd ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎 + 𝑏) = (𝑏 + 𝑎)) |
16 | 12, 13, 14, 15 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝑎 + 𝑏) = (𝑏 + 𝑎)) |
17 | 16 | fveq2d 6760 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑏 + 𝑎))) |
18 | 11, 1 | syl3an1 1161 |
. . . . . . . . 9
⊢
((((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
19 | 18, 13, 14 | mhmlem 18610 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
20 | 18, 14, 13 | mhmlem 18610 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘(𝑏 + 𝑎)) = ((𝐹‘𝑏) ⨣ (𝐹‘𝑎))) |
21 | 17, 19, 20 | 3eqtr3d 2786 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑏) ⨣ (𝐹‘𝑎))) |
22 | | simpllr 772 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘𝑎) = 𝑖) |
23 | | simpr 484 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝐹‘𝑏) = 𝑗) |
24 | 22, 23 | oveq12d 7273 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = (𝑖 ⨣ 𝑗)) |
25 | 23, 22 | oveq12d 7273 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → ((𝐹‘𝑏) ⨣ (𝐹‘𝑎)) = (𝑗 ⨣ 𝑖)) |
26 | 21, 24, 25 | 3eqtr3d 2786 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) ∧ 𝑏 ∈ 𝑋) ∧ (𝐹‘𝑏) = 𝑗) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) |
27 | | foelrni 6813 |
. . . . . . . 8
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑗 ∈ 𝑌) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) |
28 | 6, 27 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) |
29 | 28 | ad5ant13 753 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) → ∃𝑏 ∈ 𝑋 (𝐹‘𝑏) = 𝑗) |
30 | 26, 29 | r19.29a 3217 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) ∧ 𝑎 ∈ 𝑋) ∧ (𝐹‘𝑎) = 𝑖) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) |
31 | | foelrni 6813 |
. . . . . . 7
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑖 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) |
32 | 6, 31 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) |
33 | 32 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) → ∃𝑎 ∈ 𝑋 (𝐹‘𝑎) = 𝑖) |
34 | 30, 33 | r19.29a 3217 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑌) ∧ 𝑗 ∈ 𝑌) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) |
35 | 34 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑌 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) |
36 | 35 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑌 ∀𝑗 ∈ 𝑌 (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖)) |
37 | 3, 5 | iscmn 19309 |
. 2
⊢ (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑖 ∈ 𝑌 ∀𝑗 ∈ 𝑌 (𝑖 ⨣ 𝑗) = (𝑗 ⨣ 𝑖))) |
38 | 10, 36, 37 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐻 ∈ CMnd) |