MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant14 Structured version   Visualization version   GIF version

Theorem ad5ant14 769
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant14 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant14
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 706 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant13 757 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by:  legval  25903  lindsenlbs  33947  matunitlindflem1  33948  xrralrecnnle  40397  limclner  40676  pimdecfgtioo  41719  pimincfltioo  41720
  Copyright terms: Public domain W3C validator