MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant14 Structured version   Visualization version   GIF version

Theorem ad5ant14 754
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant14 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant14
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 711 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant13 747 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  leexp1a  13821  cpmatinvcl  21774  restcld  22231  ustuqtop3  23303  legval  26849  lssdimle  31593  zarcls1  31721  lindsenlbs  35699  matunitlindflem1  35700  xrralrecnnle  42812  limclner  43082  limsupub2  43243  xlimliminflimsup  43293  pimdecfgtioo  44141  pimincfltioo  44142
  Copyright terms: Public domain W3C validator