MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant14 Structured version   Visualization version   GIF version

Theorem ad5ant14 756
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant14 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant14
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 713 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant13 749 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  leexp1a  14142  cpmatinvcl  22226  restcld  22683  ustuqtop3  23755  legval  27873  lssdimle  32751  zarcls1  32918  lindsenlbs  36569  matunitlindflem1  36570  xrralrecnnle  44172  limclner  44446  limsupub2  44607  xlimliminflimsup  44657  pimdecfgtioo  45512  pimincfltioo  45513
  Copyright terms: Public domain W3C validator