| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant14 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad5ant14 | ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
| 3 | 2 | ad4ant13 751 | 1 ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: leexp1a 14193 cpmatinvcl 22655 restcld 23110 ustuqtop3 24182 legval 28563 ccatws1f1o 32927 lssdimle 33647 zarcls1 33900 lindsenlbs 37639 matunitlindflem1 37640 modelaxrep 45006 xrralrecnnle 45410 limclner 45680 limsupub2 45841 xlimliminflimsup 45891 pimdecfgtioo 46746 pimincfltioo 46747 |
| Copyright terms: Public domain | W3C validator |