MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant14 Structured version   Visualization version   GIF version

Theorem ad5ant14 755
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant14 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant14
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 712 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant13 748 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  leexp1a  13893  cpmatinvcl  21866  restcld  22323  ustuqtop3  23395  legval  26945  lssdimle  31691  zarcls1  31819  lindsenlbs  35772  matunitlindflem1  35773  xrralrecnnle  42922  limclner  43192  limsupub2  43353  xlimliminflimsup  43403  pimdecfgtioo  44254  pimincfltioo  44255
  Copyright terms: Public domain W3C validator