MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant14 Structured version   Visualization version   GIF version

Theorem ad5ant14 757
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant14 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant14
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 714 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad4ant13 750 1 (((((𝜑𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  leexp1a  14225  cpmatinvcl  22744  restcld  23201  ustuqtop3  24273  legval  28610  ccatws1f1o  32918  lssdimle  33620  zarcls1  33815  lindsenlbs  37575  matunitlindflem1  37576  xrralrecnnle  45298  limclner  45572  limsupub2  45733  xlimliminflimsup  45783  pimdecfgtioo  46638  pimincfltioo  46639
  Copyright terms: Public domain W3C validator