Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnle Structured version   Visualization version   GIF version

Theorem xrralrecnnle 42017
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xrralrecnnle.n 𝑛𝜑
xrralrecnnle.a (𝜑𝐴 ∈ ℝ*)
xrralrecnnle.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
xrralrecnnle (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrralrecnnle.n . . . . 5 𝑛𝜑
2 nfv 1915 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1900 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnle.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrralrecnnle.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76adantr 484 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
8 nnrecre 11667 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
98adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
107, 9readdcld 10659 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
1110rexrd 10680 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
1211adantlr 714 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
13 rexr 10676 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
146, 13syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1514ad2antrr 725 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
16 simplr 768 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
17 nnrp 12388 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
18 rpreccl 12403 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
2019adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
217, 20ltaddrpd 12452 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
2221adantlr 714 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
235, 15, 12, 16, 22xrlelttrd 12541 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛)))
245, 12, 23xrltled 12531 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2524ex 416 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛))))
263, 25ralrimi 3180 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2726ex 416 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
28 rpgtrecnn 42013 . . . . . . 7 (𝑥 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
2928adantl 485 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
30 nfra1 3183 . . . . . . . . 9 𝑛𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))
311, 30nfan 1900 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
32 nfv 1915 . . . . . . . 8 𝑛 𝑥 ∈ ℝ+
3331, 32nfan 1900 . . . . . . 7 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+)
34 nfv 1915 . . . . . . 7 𝑛 𝐴 ≤ (𝐵 + 𝑥)
35 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑)
36 rspa 3171 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3736adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3835, 37jca 515 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
3938adantlr 714 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
40 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ+)
41 simpr 488 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
424ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ∈ ℝ*)
436adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
44 rpre 12385 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
4643, 45readdcld 10659 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
4746rexrd 10680 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
4847ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + 𝑥) ∈ ℝ*)
4911ad5ant14 757 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
50 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
518ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ)
5245ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝑥 ∈ ℝ)
5343ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐵 ∈ ℝ)
54 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) < 𝑥)
5551, 52, 53, 54ltadd2dd 10788 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5655adantl3r 749 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5742, 49, 48, 50, 56xrlelttrd 12541 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥))
5842, 48, 57xrltled 12531 . . . . . . . . . 10 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥))
5958ex 416 . . . . . . . . 9 ((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6039, 40, 41, 59syl21anc 836 . . . . . . . 8 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6160ex 416 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥))))
6233, 34, 61rexlimd 3276 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6329, 62mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
6463ralrimiva 3149 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
65 xralrple 12586 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
664, 6, 65syl2anc 587 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6766adantr 484 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6864, 67mpbird 260 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴𝐵)
6968ex 416 . 2 (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴𝐵))
7027, 69impbid 215 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wnf 1785  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665   / cdiv 11286  cn 11625  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157
This theorem is referenced by:  xrralrecnnge  42026  iooiinicc  42179  iooiinioc  42193  iinhoiicclem  43312  preimaleiinlt  43356
  Copyright terms: Public domain W3C validator