Step | Hyp | Ref
| Expression |
1 | | xrralrecnnle.n |
. . . . 5
⊢
Ⅎ𝑛𝜑 |
2 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑛 𝐴 ≤ 𝐵 |
3 | 1, 2 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑛(𝜑 ∧ 𝐴 ≤ 𝐵) |
4 | | xrralrecnnle.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
5 | 4 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℝ*) |
6 | | xrralrecnnle.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ) |
8 | | nnrecre 12015 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
9 | 8 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
10 | 7, 9 | readdcld 11004 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
11 | 10 | rexrd 11025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
12 | 11 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
13 | | rexr 11021 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
14 | 6, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
15 | 14 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈
ℝ*) |
16 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ 𝐵) |
17 | | nnrp 12741 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
18 | | rpreccl 12756 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ+
→ (1 / 𝑛) ∈
ℝ+) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
20 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ+) |
21 | 7, 20 | ltaddrpd 12805 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛))) |
22 | 21 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛))) |
23 | 5, 15, 12, 16, 22 | xrlelttrd 12894 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛))) |
24 | 5, 12, 23 | xrltled 12884 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
25 | 24 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛)))) |
26 | 3, 25 | ralrimi 3141 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
27 | 26 | ex 413 |
. 2
⊢ (𝜑 → (𝐴 ≤ 𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))) |
28 | | rpgtrecnn 42919 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ∃𝑛 ∈
ℕ (1 / 𝑛) < 𝑥) |
29 | 28 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) →
∃𝑛 ∈ ℕ (1
/ 𝑛) < 𝑥) |
30 | | nfra1 3144 |
. . . . . . . . 9
⊢
Ⅎ𝑛∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) |
31 | 1, 30 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
32 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈
ℝ+ |
33 | 31, 32 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) |
34 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑛 𝐴 ≤ (𝐵 + 𝑥) |
35 | | simpll 764 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑) |
36 | | rspa 3132 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
37 | 36 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
38 | 35, 37 | jca 512 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛)))) |
39 | 38 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛)))) |
40 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈
ℝ+) |
41 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ) |
42 | 4 | ad4antr 729 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝐴 ∈
ℝ*) |
43 | 6 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈
ℝ) |
44 | | rpre 12738 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
45 | 44 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
46 | 43, 45 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ) |
47 | 46 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈
ℝ*) |
48 | 47 | ad5ant13 754 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (𝐵 + 𝑥) ∈
ℝ*) |
49 | 11 | ad5ant14 755 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
50 | | simp-4r 781 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛))) |
51 | 8 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ) |
52 | 45 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝑥 ∈ ℝ) |
53 | 43 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝐵 ∈ ℝ) |
54 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (1 / 𝑛) < 𝑥) |
55 | 51, 52, 53, 54 | ltadd2dd 11134 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥)) |
56 | 55 | adantl3r 747 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥)) |
57 | 42, 49, 48, 50, 56 | xrlelttrd 12894 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥)) |
58 | 42, 48, 57 | xrltled 12884 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 /
𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥)) |
59 | 58 | ex 413 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 /
𝑛) < 𝑥 → 𝐴 ≤ (𝐵 + 𝑥))) |
60 | 39, 40, 41, 59 | syl21anc 835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 /
𝑛) < 𝑥 → 𝐴 ≤ (𝐵 + 𝑥))) |
61 | 60 | ex 413 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 /
𝑛) < 𝑥 → 𝐴 ≤ (𝐵 + 𝑥)))) |
62 | 33, 34, 61 | rexlimd 3250 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) →
(∃𝑛 ∈ ℕ (1
/ 𝑛) < 𝑥 → 𝐴 ≤ (𝐵 + 𝑥))) |
63 | 29, 62 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥)) |
64 | 63 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)) |
65 | | xralrple 12939 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+
𝐴 ≤ (𝐵 + 𝑥))) |
66 | 4, 6, 65 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) |
67 | 66 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))) |
68 | 64, 67 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴 ≤ 𝐵) |
69 | 68 | ex 413 |
. 2
⊢ (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴 ≤ 𝐵)) |
70 | 27, 69 | impbid 211 |
1
⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))) |