Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnle Structured version   Visualization version   GIF version

Theorem xrralrecnnle 40076
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xrralrecnnle.n 𝑛𝜑
xrralrecnnle.a (𝜑𝐴 ∈ ℝ*)
xrralrecnnle.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
xrralrecnnle (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrralrecnnle.n . . . . 5 𝑛𝜑
2 nfv 2005 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1990 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnle.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 708 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrralrecnnle.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76adantr 468 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
8 nnrecre 11339 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
98adantl 469 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
107, 9readdcld 10350 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
1110rexrd 10370 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
1211adantlr 697 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
13 rexr 10366 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
146, 13syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1514ad2antrr 708 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
16 simplr 776 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
17 nnrp 12052 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
18 rpreccl 12067 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
2019adantl 469 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
217, 20ltaddrpd 12115 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
2221adantlr 697 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
235, 15, 12, 16, 22xrlelttrd 12205 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛)))
245, 12, 23xrltled 12195 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2524ex 399 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛))))
263, 25ralrimi 3145 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2726ex 399 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
28 rpgtrecnn 40071 . . . . . . 7 (𝑥 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
2928adantl 469 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
30 nfra1 3129 . . . . . . . . 9 𝑛𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))
311, 30nfan 1990 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
32 nfv 2005 . . . . . . . 8 𝑛 𝑥 ∈ ℝ+
3331, 32nfan 1990 . . . . . . 7 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+)
34 nfv 2005 . . . . . . 7 𝑛 𝐴 ≤ (𝐵 + 𝑥)
35 simpll 774 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑)
36 rspa 3118 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3736adantll 696 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3835, 37jca 503 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
3938adantlr 697 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
40 simplr 776 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ+)
41 simpr 473 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
424ad4antr 715 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ∈ ℝ*)
436adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
44 rpre 12049 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544adantl 469 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
4643, 45readdcld 10350 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
4746rexrd 10370 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
4847ad5ant13 758 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + 𝑥) ∈ ℝ*)
4911ad5ant14 760 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
50 simp-4r 794 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
518ad2antlr 709 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ)
5245ad2antrr 708 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝑥 ∈ ℝ)
5343ad2antrr 708 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐵 ∈ ℝ)
54 simpr 473 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) < 𝑥)
5551, 52, 53, 54ltadd2dd 10477 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5655adantl3r 747 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5742, 49, 48, 50, 56xrlelttrd 12205 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥))
5842, 48, 57xrltled 12195 . . . . . . . . . 10 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥))
5958ex 399 . . . . . . . . 9 ((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6039, 40, 41, 59syl21anc 857 . . . . . . . 8 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6160ex 399 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥))))
6233, 34, 61rexlimd 3214 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6329, 62mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
6463ralrimiva 3154 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
65 xralrple 12250 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
664, 6, 65syl2anc 575 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6766adantr 468 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6864, 67mpbird 248 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴𝐵)
6968ex 399 . 2 (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴𝐵))
7027, 69impbid 203 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wnf 1863  wcel 2156  wral 3096  wrex 3097   class class class wbr 4844  (class class class)co 6870  cr 10216  1c1 10218   + caddc 10220  *cxr 10354   < clt 10355  cle 10356   / cdiv 10965  cn 11301  +crp 12042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-sup 8583  df-inf 8584  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-n0 11556  df-z 11640  df-uz 11901  df-q 12004  df-rp 12043  df-fl 12813
This theorem is referenced by:  xrralrecnnge  40086  iooiinicc  40243  iooiinioc  40257  iinhoiicclem  41363  preimaleiinlt  41407
  Copyright terms: Public domain W3C validator