Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnle Structured version   Visualization version   GIF version

Theorem xrralrecnnle 45362
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xrralrecnnle.n 𝑛𝜑
xrralrecnnle.a (𝜑𝐴 ∈ ℝ*)
xrralrecnnle.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
xrralrecnnle (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrralrecnnle.n . . . . 5 𝑛𝜑
2 nfv 1914 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1899 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnle.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrralrecnnle.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
8 nnrecre 12170 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
98adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
107, 9readdcld 11144 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
1110rexrd 11165 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
1211adantlr 715 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
13 rexr 11161 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
146, 13syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
16 simplr 768 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
17 nnrp 12905 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
18 rpreccl 12921 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
2019adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
217, 20ltaddrpd 12970 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
2221adantlr 715 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
235, 15, 12, 16, 22xrlelttrd 13062 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛)))
245, 12, 23xrltled 13052 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2524ex 412 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛))))
263, 25ralrimi 3227 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2726ex 412 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
28 rpgtrecnn 45359 . . . . . . 7 (𝑥 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
2928adantl 481 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
30 nfra1 3253 . . . . . . . . 9 𝑛𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))
311, 30nfan 1899 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
32 nfv 1914 . . . . . . . 8 𝑛 𝑥 ∈ ℝ+
3331, 32nfan 1899 . . . . . . 7 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+)
34 nfv 1914 . . . . . . 7 𝑛 𝐴 ≤ (𝐵 + 𝑥)
35 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑)
36 rspa 3218 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3736adantll 714 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3835, 37jca 511 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
3938adantlr 715 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
40 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ+)
41 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
424ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ∈ ℝ*)
436adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
44 rpre 12902 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
4643, 45readdcld 11144 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
4746rexrd 11165 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
4847ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + 𝑥) ∈ ℝ*)
4911ad5ant14 757 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
50 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
518ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ)
5245ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝑥 ∈ ℝ)
5343ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐵 ∈ ℝ)
54 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) < 𝑥)
5551, 52, 53, 54ltadd2dd 11275 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5655adantl3r 750 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5742, 49, 48, 50, 56xrlelttrd 13062 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥))
5842, 48, 57xrltled 13052 . . . . . . . . . 10 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥))
5958ex 412 . . . . . . . . 9 ((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6039, 40, 41, 59syl21anc 837 . . . . . . . 8 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6160ex 412 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥))))
6233, 34, 61rexlimd 3236 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6329, 62mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
6463ralrimiva 3121 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
65 xralrple 13107 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
664, 6, 65syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6766adantr 480 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6864, 67mpbird 257 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴𝐵)
6968ex 412 . 2 (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴𝐵))
7027, 69impbid 212 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150   / cdiv 11777  cn 12128  +crp 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-fl 13696
This theorem is referenced by:  xrralrecnnge  45369  iooiinicc  45523  iooiinioc  45537  iinhoiicclem  46654  preimaleiinlt  46702
  Copyright terms: Public domain W3C validator