Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnle Structured version   Visualization version   GIF version

Theorem xrralrecnnle 43704
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xrralrecnnle.n 𝑛𝜑
xrralrecnnle.a (𝜑𝐴 ∈ ℝ*)
xrralrecnnle.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
xrralrecnnle (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrralrecnnle.n . . . . 5 𝑛𝜑
2 nfv 1918 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1903 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnle.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrralrecnnle.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76adantr 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
8 nnrecre 12200 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
98adantl 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
107, 9readdcld 11189 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
1110rexrd 11210 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
1211adantlr 714 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
13 rexr 11206 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
146, 13syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1514ad2antrr 725 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
16 simplr 768 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
17 nnrp 12931 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
18 rpreccl 12946 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
2019adantl 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
217, 20ltaddrpd 12995 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
2221adantlr 714 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
235, 15, 12, 16, 22xrlelttrd 13085 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛)))
245, 12, 23xrltled 13075 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2524ex 414 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛))))
263, 25ralrimi 3239 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2726ex 414 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
28 rpgtrecnn 43701 . . . . . . 7 (𝑥 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
2928adantl 483 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
30 nfra1 3266 . . . . . . . . 9 𝑛𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))
311, 30nfan 1903 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
32 nfv 1918 . . . . . . . 8 𝑛 𝑥 ∈ ℝ+
3331, 32nfan 1903 . . . . . . 7 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+)
34 nfv 1918 . . . . . . 7 𝑛 𝐴 ≤ (𝐵 + 𝑥)
35 simpll 766 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑)
36 rspa 3230 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3736adantll 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3835, 37jca 513 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
3938adantlr 714 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
40 simplr 768 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ+)
41 simpr 486 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
424ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ∈ ℝ*)
436adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
44 rpre 12928 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544adantl 483 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
4643, 45readdcld 11189 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
4746rexrd 11210 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
4847ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + 𝑥) ∈ ℝ*)
4911ad5ant14 757 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
50 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
518ad2antlr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ)
5245ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝑥 ∈ ℝ)
5343ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐵 ∈ ℝ)
54 simpr 486 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) < 𝑥)
5551, 52, 53, 54ltadd2dd 11319 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5655adantl3r 749 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5742, 49, 48, 50, 56xrlelttrd 13085 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥))
5842, 48, 57xrltled 13075 . . . . . . . . . 10 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥))
5958ex 414 . . . . . . . . 9 ((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6039, 40, 41, 59syl21anc 837 . . . . . . . 8 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6160ex 414 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥))))
6233, 34, 61rexlimd 3248 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6329, 62mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
6463ralrimiva 3140 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
65 xralrple 13130 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
664, 6, 65syl2anc 585 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6766adantr 482 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6864, 67mpbird 257 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴𝐵)
6968ex 414 . 2 (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴𝐵))
7027, 69impbid 211 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wnf 1786  wcel 2107  wral 3061  wrex 3070   class class class wbr 5106  (class class class)co 7358  cr 11055  1c1 11057   + caddc 11059  *cxr 11193   < clt 11194  cle 11195   / cdiv 11817  cn 12158  +crp 12920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-fl 13703
This theorem is referenced by:  xrralrecnnge  43711  iooiinicc  43866  iooiinioc  43880  iinhoiicclem  45000  preimaleiinlt  45048
  Copyright terms: Public domain W3C validator