Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrralrecnnle Structured version   Visualization version   GIF version

Theorem xrralrecnnle 42922
Description: Show that 𝐴 is less than 𝐵 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
xrralrecnnle.n 𝑛𝜑
xrralrecnnle.a (𝜑𝐴 ∈ ℝ*)
xrralrecnnle.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
xrralrecnnle (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem xrralrecnnle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xrralrecnnle.n . . . . 5 𝑛𝜑
2 nfv 1917 . . . . 5 𝑛 𝐴𝐵
31, 2nfan 1902 . . . 4 𝑛(𝜑𝐴𝐵)
4 xrralrecnnle.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
54ad2antrr 723 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
6 xrralrecnnle.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
76adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
8 nnrecre 12015 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
98adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
107, 9readdcld 11004 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
1110rexrd 11025 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
1211adantlr 712 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
13 rexr 11021 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
146, 13syl 17 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1514ad2antrr 723 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ*)
16 simplr 766 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴𝐵)
17 nnrp 12741 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
18 rpreccl 12756 . . . . . . . . . . 11 (𝑛 ∈ ℝ+ → (1 / 𝑛) ∈ ℝ+)
1917, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
2019adantl 482 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
217, 20ltaddrpd 12805 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
2221adantlr 712 . . . . . . 7 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
235, 15, 12, 16, 22xrlelttrd 12894 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 < (𝐵 + (1 / 𝑛)))
245, 12, 23xrltled 12884 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2524ex 413 . . . 4 ((𝜑𝐴𝐵) → (𝑛 ∈ ℕ → 𝐴 ≤ (𝐵 + (1 / 𝑛))))
263, 25ralrimi 3141 . . 3 ((𝜑𝐴𝐵) → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
2726ex 413 . 2 (𝜑 → (𝐴𝐵 → ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
28 rpgtrecnn 42919 . . . . . . 7 (𝑥 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
2928adantl 482 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥)
30 nfra1 3144 . . . . . . . . 9 𝑛𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))
311, 30nfan 1902 . . . . . . . 8 𝑛(𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)))
32 nfv 1917 . . . . . . . 8 𝑛 𝑥 ∈ ℝ+
3331, 32nfan 1902 . . . . . . 7 𝑛((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+)
34 nfv 1917 . . . . . . 7 𝑛 𝐴 ≤ (𝐵 + 𝑥)
35 simpll 764 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝜑)
36 rspa 3132 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3736adantll 711 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
3835, 37jca 512 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
3938adantlr 712 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → (𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))))
40 simplr 766 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ+)
41 simpr 485 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
424ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ∈ ℝ*)
436adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
44 rpre 12738 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4544adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
4643, 45readdcld 11004 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
4746rexrd 11025 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
4847ad5ant13 754 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + 𝑥) ∈ ℝ*)
4911ad5ant14 755 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
50 simp-4r 781 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + (1 / 𝑛)))
518ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) ∈ ℝ)
5245ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝑥 ∈ ℝ)
5343ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐵 ∈ ℝ)
54 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (1 / 𝑛) < 𝑥)
5551, 52, 53, 54ltadd2dd 11134 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5655adantl3r 747 . . . . . . . . . . . 12 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → (𝐵 + (1 / 𝑛)) < (𝐵 + 𝑥))
5742, 49, 48, 50, 56xrlelttrd 12894 . . . . . . . . . . 11 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 < (𝐵 + 𝑥))
5842, 48, 57xrltled 12884 . . . . . . . . . 10 (((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (1 / 𝑛) < 𝑥) → 𝐴 ≤ (𝐵 + 𝑥))
5958ex 413 . . . . . . . . 9 ((((𝜑𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6039, 40, 41, 59syl21anc 835 . . . . . . . 8 ((((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6160ex 413 . . . . . . 7 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ ℕ → ((1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥))))
6233, 34, 61rexlimd 3250 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → (∃𝑛 ∈ ℕ (1 / 𝑛) < 𝑥𝐴 ≤ (𝐵 + 𝑥)))
6329, 62mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ≤ (𝐵 + 𝑥))
6463ralrimiva 3103 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥))
65 xralrple 12939 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
664, 6, 65syl2anc 584 . . . . 5 (𝜑 → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6766adantr 481 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → (𝐴𝐵 ↔ ∀𝑥 ∈ ℝ+ 𝐴 ≤ (𝐵 + 𝑥)))
6864, 67mpbird 256 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))) → 𝐴𝐵)
6968ex 413 . 2 (𝜑 → (∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛)) → 𝐴𝐵))
7027, 69impbid 211 1 (𝜑 → (𝐴𝐵 ↔ ∀𝑛 ∈ ℕ 𝐴 ≤ (𝐵 + (1 / 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wnf 1786  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  cn 11973  +crp 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fl 13512
This theorem is referenced by:  xrralrecnnge  42930  iooiinicc  43080  iooiinioc  43094  iinhoiicclem  44211  preimaleiinlt  44258
  Copyright terms: Public domain W3C validator