Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem1 Structured version   Visualization version   GIF version

Theorem smfaddlem1 43033
Description: Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem1.x 𝑥𝜑
smfaddlem1.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem1.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem1.r (𝜑𝑅 ∈ ℝ)
smfaddlem1.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
Distinct variable groups:   𝐴,𝑝,𝑞   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞   𝐷,𝑝,𝑞   𝑥,𝐾   𝑅,𝑝,𝑞   𝜑,𝑝,𝑞   𝑥,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝐾(𝑞,𝑝)

Proof of Theorem smfaddlem1
StepHypRef Expression
1 smfaddlem1.x . . 3 𝑥𝜑
2 simpl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝜑)
3 inss1 4204 . . . . . . . . . . . 12 (𝐴𝐶) ⊆ 𝐴
4 rabid 3378 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 + 𝐷) < 𝑅))
54simplbi 500 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥 ∈ (𝐴𝐶))
63, 5sseldi 3964 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥𝐴)
76adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑥𝐴)
8 smfaddlem1.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
92, 7, 8syl2anc 586 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 ∈ ℝ)
109rexrd 10685 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 ∈ ℝ*)
11 smfaddlem1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
1211adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑅 ∈ ℝ)
13 elinel2 4172 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1413adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
15 smfaddlem1.d . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1614, 15syldan 593 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
175, 16sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐷 ∈ ℝ)
1812, 17resubcld 11062 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝑅𝐷) ∈ ℝ)
1918rexrd 10685 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝑅𝐷) ∈ ℝ*)
204simprbi 499 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → (𝐵 + 𝐷) < 𝑅)
2120adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝐵 + 𝐷) < 𝑅)
229, 17, 12ltaddsubd 11234 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ((𝐵 + 𝐷) < 𝑅𝐵 < (𝑅𝐷)))
2321, 22mpbid 234 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 < (𝑅𝐷))
2410, 19, 23qelioo 41815 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ∃𝑝 ∈ ℚ 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
2517rexrd 10685 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐷 ∈ ℝ*)
2625ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 ∈ ℝ*)
2711ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → 𝑅 ∈ ℝ)
28 qre 12347 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
2928adantl 484 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → 𝑝 ∈ ℝ)
3027, 29resubcld 11062 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑅𝑝) ∈ ℝ)
3130rexrd 10685 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑅𝑝) ∈ ℝ*)
3231adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑅𝑝) ∈ ℝ*)
33 elioore 12762 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵(,)(𝑅𝐷)) → 𝑝 ∈ ℝ)
3433adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 ∈ ℝ)
3512adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑅 ∈ ℝ)
3617adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 ∈ ℝ)
3710adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 ∈ ℝ*)
3819adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑅𝐷) ∈ ℝ*)
39 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
40 iooltub 41779 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ (𝑅𝐷) ∈ ℝ*𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 < (𝑅𝐷))
4137, 38, 39, 40syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 < (𝑅𝐷))
4234, 35, 36, 41ltsub13d 11240 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 < (𝑅𝑝))
4342adantlr 713 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 < (𝑅𝑝))
4426, 32, 43qelioo 41815 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
45 nfv 1911 . . . . . . . . . . . 12 𝑞(((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
46 nfre1 3306 . . . . . . . . . . . 12 𝑞𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
47 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ ℚ)
48 elioore 12762 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → 𝑞 ∈ ℝ)
49483ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ ℝ)
50353adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑅 ∈ ℝ)
51333ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑝 ∈ ℝ)
5250, 51resubcld 11062 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ)
53253ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 ∈ ℝ*)
5452rexrd 10685 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ*)
55 simp3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
56 iooltub 41779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ ℝ* ∧ (𝑅𝑝) ∈ ℝ*𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 < (𝑅𝑝))
5753, 54, 55, 56syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 < (𝑅𝑝))
5849, 52, 51, 57ltadd2dd 10793 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < (𝑝 + (𝑅𝑝)))
5951recnd 10663 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑝 ∈ ℂ)
6050recnd 10663 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑅 ∈ ℂ)
6159, 60pncan3d 10994 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + (𝑅𝑝)) = 𝑅)
6258, 61breqtrd 5084 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < 𝑅)
6362ad5ant135 1364 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < 𝑅)
6447, 63jca 514 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑞 ∈ ℚ ∧ (𝑝 + 𝑞) < 𝑅))
65 rabid 3378 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ↔ (𝑞 ∈ ℚ ∧ (𝑝 + 𝑞) < 𝑅))
6664, 65sylibr 236 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
67 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → 𝑝 ∈ ℚ)
68 qex 12354 . . . . . . . . . . . . . . . . . . . 20 ℚ ∈ V
6968rabex 5227 . . . . . . . . . . . . . . . . . . 19 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
7069a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
71 smfaddlem1.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7271fvmpt2 6773 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℚ ∧ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7367, 70, 72syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7473ad4antlr 731 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7566, 74eleqtrrd 2916 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐾𝑝))
76 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
7776, 5syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ (𝐴𝐶))
78 ioogtlb 41763 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑅𝐷) ∈ ℝ*𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 < 𝑝)
7937, 38, 39, 78syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 < 𝑝)
8079ad5ant13 755 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐵 < 𝑝)
8125ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 ∈ ℝ*)
8231adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ*)
83 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
84 ioogtlb 41763 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℝ* ∧ (𝑅𝑝) ∈ ℝ*𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8581, 82, 83, 84syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8685ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8777, 80, 86jca32 518 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
88 rabid 3378 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
8987, 88sylibr 236 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
90 rspe 3304 . . . . . . . . . . . . . . 15 ((𝑞 ∈ (𝐾𝑝) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9175, 89, 90syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9291ex 415 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) → (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9392ex 415 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑞 ∈ ℚ → (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})))
9445, 46, 93rexlimd 3317 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (∃𝑞 ∈ ℚ 𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9544, 94mpd 15 . . . . . . . . . 10 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
96 eliun 4915 . . . . . . . . . 10 (𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9795, 96sylibr 236 . . . . . . . . 9 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9897ex 415 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑝 ∈ (𝐵(,)(𝑅𝐷)) → 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9998reximdva 3274 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (∃𝑝 ∈ ℚ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) → ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
10024, 99mpd 15 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
101 eliun 4915 . . . . . 6 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
102100, 101sylibr 236 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
103102ex 415 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
10496rexbii 3247 . . . . . . . . 9 (∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
105101, 104bitri 277 . . . . . . . 8 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
106105biimpi 218 . . . . . . 7 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
107106adantl 484 . . . . . 6 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
10888biimpi 218 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
109108simpld 497 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ (𝐴𝐶))
1101093ad2ant3 1131 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ (𝐴𝐶))
111 elinel1 4171 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
112111adantl 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
113112, 8syldan 593 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
114109, 113sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 ∈ ℝ)
1151143adant2 1127 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 ∈ ℝ)
116109, 16sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 ∈ ℝ)
1171163adant2 1127 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 ∈ ℝ)
118115, 117readdcld 10664 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) ∈ ℝ)
119 simp2l 1195 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑝 ∈ ℚ)
120119, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑝 ∈ ℝ)
121 ssrab2 4055 . . . . . . . . . . . . . . . 16 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
122 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ (𝐾𝑝))
12373adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
124122, 123eleqtrd 2915 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
125121, 124sseldi 3964 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
1261253ad2ant2 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑞 ∈ ℚ)
12728ssriv 3970 . . . . . . . . . . . . . . 15 ℚ ⊆ ℝ
128127sseli 3962 . . . . . . . . . . . . . 14 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
129126, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑞 ∈ ℝ)
130120, 129readdcld 10664 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑝 + 𝑞) ∈ ℝ)
131113ad2ant1 1129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑅 ∈ ℝ)
132108simprld 770 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝐵 < 𝑝)
1331323ad2ant3 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 < 𝑝)
134108simprrd 772 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝐷 < 𝑞)
1351343ad2ant3 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 < 𝑞)
136115, 117, 120, 129, 133, 135ltadd12dd 41604 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) < (𝑝 + 𝑞))
137 rabidim2 41361 . . . . . . . . . . . . . 14 (𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} → (𝑝 + 𝑞) < 𝑅)
138124, 137syl 17 . . . . . . . . . . . . 13 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑝 + 𝑞) < 𝑅)
1391383ad2ant2 1130 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑝 + 𝑞) < 𝑅)
140118, 130, 131, 136, 139lttrd 10795 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) < 𝑅)
141110, 140jca 514 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 + 𝐷) < 𝑅))
142141, 4sylibr 236 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
1431423exp 1115 . . . . . . . 8 (𝜑 → ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})))
144143rexlimdvv 3293 . . . . . . 7 (𝜑 → (∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
145144adantr 483 . . . . . 6 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
146107, 145mpd 15 . . . . 5 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
147146ex 415 . . . 4 (𝜑 → (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
148103, 147impbid 214 . . 3 (𝜑 → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
1491, 148alrimi 2209 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
150 nfrab1 3384 . . 3 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}
151 nfcv 2977 . . . 4 𝑥
152 nfcv 2977 . . . . 5 𝑥(𝐾𝑝)
153 nfrab1 3384 . . . . 5 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
154152, 153nfiun 4941 . . . 4 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
155151, 154nfiun 4941 . . 3 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
156150, 155cleqf 3010 . 2 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
157149, 156sylibr 236 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wnf 1780  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cin 3934   ciun 4911   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cr 10530   + caddc 10534  *cxr 10668   < clt 10669  cmin 10864  cq 12342  (,)cioo 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-ioo 12736
This theorem is referenced by:  smfaddlem2  43034
  Copyright terms: Public domain W3C validator