Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem1 Structured version   Visualization version   GIF version

Theorem smfaddlem1 41763
Description: Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem1.x 𝑥𝜑
smfaddlem1.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem1.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem1.r (𝜑𝑅 ∈ ℝ)
smfaddlem1.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
Distinct variable groups:   𝐴,𝑝,𝑞   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞   𝐷,𝑝,𝑞   𝑥,𝐾   𝑅,𝑝,𝑞   𝜑,𝑝,𝑞   𝑥,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝐾(𝑞,𝑝)

Proof of Theorem smfaddlem1
StepHypRef Expression
1 smfaddlem1.x . . 3 𝑥𝜑
2 simpl 476 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝜑)
3 inss1 4059 . . . . . . . . . . . 12 (𝐴𝐶) ⊆ 𝐴
4 rabid 3326 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 + 𝐷) < 𝑅))
54simplbi 493 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥 ∈ (𝐴𝐶))
63, 5sseldi 3825 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥𝐴)
76adantl 475 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑥𝐴)
8 smfaddlem1.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
92, 7, 8syl2anc 579 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 ∈ ℝ)
109rexrd 10413 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 ∈ ℝ*)
11 smfaddlem1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
1211adantr 474 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑅 ∈ ℝ)
13 elinel2 4029 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1413adantl 475 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
15 smfaddlem1.d . . . . . . . . . . . 12 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1614, 15syldan 585 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
175, 16sylan2 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐷 ∈ ℝ)
1812, 17resubcld 10789 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝑅𝐷) ∈ ℝ)
1918rexrd 10413 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝑅𝐷) ∈ ℝ*)
204simprbi 492 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → (𝐵 + 𝐷) < 𝑅)
2120adantl 475 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (𝐵 + 𝐷) < 𝑅)
229, 17, 12ltaddsubd 10959 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ((𝐵 + 𝐷) < 𝑅𝐵 < (𝑅𝐷)))
2321, 22mpbid 224 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐵 < (𝑅𝐷))
2410, 19, 23qelioo 40566 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ∃𝑝 ∈ ℚ 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
2517rexrd 10413 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝐷 ∈ ℝ*)
2625ad2antrr 717 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 ∈ ℝ*)
2711ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → 𝑅 ∈ ℝ)
28 qre 12083 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
2928adantl 475 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → 𝑝 ∈ ℝ)
3027, 29resubcld 10789 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑅𝑝) ∈ ℝ)
3130rexrd 10413 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑅𝑝) ∈ ℝ*)
3231adantr 474 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑅𝑝) ∈ ℝ*)
33 elioore 12500 . . . . . . . . . . . . . . 15 (𝑝 ∈ (𝐵(,)(𝑅𝐷)) → 𝑝 ∈ ℝ)
3433adantl 475 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 ∈ ℝ)
3512adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑅 ∈ ℝ)
3617adantr 474 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 ∈ ℝ)
3710adantr 474 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 ∈ ℝ*)
3819adantr 474 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑅𝐷) ∈ ℝ*)
39 simpr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
40 iooltub 40530 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ (𝑅𝐷) ∈ ℝ*𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 < (𝑅𝐷))
4137, 38, 39, 40syl3anc 1494 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑝 < (𝑅𝐷))
4234, 35, 36, 41ltsub13d 10965 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 < (𝑅𝑝))
4342adantlr 706 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐷 < (𝑅𝑝))
4426, 32, 43qelioo 40566 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → ∃𝑞 ∈ ℚ 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
45 nfv 2013 . . . . . . . . . . . 12 𝑞(((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)))
46 nfre1 3213 . . . . . . . . . . . 12 𝑞𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
47 simplr 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ ℚ)
48 elioore 12500 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → 𝑞 ∈ ℝ)
49483ad2ant3 1169 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ ℝ)
50353adant3 1166 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑅 ∈ ℝ)
51333ad2ant2 1168 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑝 ∈ ℝ)
5250, 51resubcld 10789 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ)
53253ad2ant1 1167 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 ∈ ℝ*)
5452rexrd 10413 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ*)
55 simp3 1172 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
56 iooltub 40530 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ ℝ* ∧ (𝑅𝑝) ∈ ℝ*𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 < (𝑅𝑝))
5753, 54, 55, 56syl3anc 1494 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 < (𝑅𝑝))
5849, 52, 51, 57ltadd2dd 10522 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < (𝑝 + (𝑅𝑝)))
5951recnd 10392 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑝 ∈ ℂ)
6050recnd 10392 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑅 ∈ ℂ)
6159, 60pncan3d 10723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + (𝑅𝑝)) = 𝑅)
6258, 61breqtrd 4901 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < 𝑅)
6362ad5ant135 1488 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑝 + 𝑞) < 𝑅)
6447, 63jca 507 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑞 ∈ ℚ ∧ (𝑝 + 𝑞) < 𝑅))
65 rabid 3326 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ↔ (𝑞 ∈ ℚ ∧ (𝑝 + 𝑞) < 𝑅))
6664, 65sylibr 226 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
67 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → 𝑝 ∈ ℚ)
68 qex 12090 . . . . . . . . . . . . . . . . . . . 20 ℚ ∈ V
6968rabex 5039 . . . . . . . . . . . . . . . . . . 19 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
7069a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℚ → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
71 smfaddlem1.k . . . . . . . . . . . . . . . . . . 19 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7271fvmpt2 6543 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℚ ∧ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7367, 70, 72syl2anc 579 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℚ → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7473ad4antlr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
7566, 74eleqtrrd 2909 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐾𝑝))
76 simp-5r 807 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
7776, 5syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ (𝐴𝐶))
78 ioogtlb 40514 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑅𝐷) ∈ ℝ*𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 < 𝑝)
7937, 38, 39, 78syl3anc 1494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝐵 < 𝑝)
8079ad5ant13 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐵 < 𝑝)
8125ad2antrr 717 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 ∈ ℝ*)
8231adantr 474 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑅𝑝) ∈ ℝ*)
83 simpr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑞 ∈ (𝐷(,)(𝑅𝑝)))
84 ioogtlb 40514 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℝ* ∧ (𝑅𝑝) ∈ ℝ*𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8581, 82, 83, 84syl3anc 1494 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8685ad4ant14 759 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝐷 < 𝑞)
8777, 80, 86jca32 511 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
88 rabid 3326 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
8987, 88sylibr 226 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
90 rspe 3211 . . . . . . . . . . . . . . 15 ((𝑞 ∈ (𝐾𝑝) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9175, 89, 90syl2anc 579 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) ∧ 𝑞 ∈ (𝐷(,)(𝑅𝑝))) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9291ex 403 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) ∧ 𝑞 ∈ ℚ) → (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9392ex 403 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (𝑞 ∈ ℚ → (𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})))
9445, 46, 93rexlimd 3235 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → (∃𝑞 ∈ ℚ 𝑞 ∈ (𝐷(,)(𝑅𝑝)) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9544, 94mpd 15 . . . . . . . . . 10 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
96 eliun 4746 . . . . . . . . . 10 (𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9795, 96sylibr 226 . . . . . . . . 9 ((((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) ∧ 𝑝 ∈ (𝐵(,)(𝑅𝐷))) → 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
9897ex 403 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) ∧ 𝑝 ∈ ℚ) → (𝑝 ∈ (𝐵(,)(𝑅𝐷)) → 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
9998reximdva 3225 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → (∃𝑝 ∈ ℚ 𝑝 ∈ (𝐵(,)(𝑅𝐷)) → ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
10024, 99mpd 15 . . . . . 6 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
101 eliun 4746 . . . . . 6 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
102100, 101sylibr 226 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}) → 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
103102ex 403 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} → 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
10496rexbii 3251 . . . . . . . . 9 (∃𝑝 ∈ ℚ 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
105101, 104bitri 267 . . . . . . . 8 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
106105biimpi 208 . . . . . . 7 (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
107106adantl 475 . . . . . 6 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → ∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
10888biimpi 208 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 < 𝑝𝐷 < 𝑞)))
109108simpld 490 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ (𝐴𝐶))
1101093ad2ant3 1169 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ (𝐴𝐶))
111 elinel1 4028 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
112111adantl 475 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
113112, 8syldan 585 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
114109, 113sylan2 586 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 ∈ ℝ)
1151143adant2 1165 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 ∈ ℝ)
116109, 16sylan2 586 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 ∈ ℝ)
1171163adant2 1165 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 ∈ ℝ)
118115, 117readdcld 10393 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) ∈ ℝ)
119 simp2l 1260 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑝 ∈ ℚ)
120119, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑝 ∈ ℝ)
121 ssrab2 3914 . . . . . . . . . . . . . . . 16 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
122 simpr 479 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ (𝐾𝑝))
12373adantr 474 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
124122, 123eleqtrd 2908 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
125121, 124sseldi 3825 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
1261253ad2ant2 1168 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑞 ∈ ℚ)
12728ssriv 3831 . . . . . . . . . . . . . . 15 ℚ ⊆ ℝ
128127sseli 3823 . . . . . . . . . . . . . 14 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
129126, 128syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑞 ∈ ℝ)
130120, 129readdcld 10393 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑝 + 𝑞) ∈ ℝ)
131113ad2ant1 1167 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑅 ∈ ℝ)
132108simprld 788 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝐵 < 𝑝)
1331323ad2ant3 1169 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐵 < 𝑝)
134108simprrd 790 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝐷 < 𝑞)
1351343ad2ant3 1169 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝐷 < 𝑞)
136115, 117, 120, 129, 133, 135ltadd12dd 40354 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) < (𝑝 + 𝑞))
137 rabidim2 40099 . . . . . . . . . . . . . 14 (𝑞 ∈ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} → (𝑝 + 𝑞) < 𝑅)
138124, 137syl 17 . . . . . . . . . . . . 13 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑝 + 𝑞) < 𝑅)
1391383ad2ant2 1168 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑝 + 𝑞) < 𝑅)
140118, 130, 131, 136, 139lttrd 10524 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝐵 + 𝐷) < 𝑅)
141110, 140jca 507 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 + 𝐷) < 𝑅))
142141, 4sylibr 226 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
1431423exp 1152 . . . . . . . 8 (𝜑 → ((𝑝 ∈ ℚ ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})))
144143rexlimdvv 3247 . . . . . . 7 (𝜑 → (∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
145144adantr 474 . . . . . 6 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → (∃𝑝 ∈ ℚ ∃𝑞 ∈ (𝐾𝑝)𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
146107, 145mpd 15 . . . . 5 ((𝜑𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅})
147146ex 403 . . . 4 (𝜑 → (𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}))
148103, 147impbid 204 . . 3 (𝜑 → (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
1491, 148alrimi 2256 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
150 nfrab1 3333 . . 3 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅}
151 nfcv 2969 . . . 4 𝑥
152 nfcv 2969 . . . . 5 𝑥(𝐾𝑝)
153 nfrab1 3333 . . . . 5 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
154152, 153nfiun 4770 . . . 4 𝑥 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
155151, 154nfiun 4770 . . 3 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
156150, 155dfcleqf 40071 . 2 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ↔ 𝑥 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}))
157149, 156sylibr 226 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111  wal 1654   = wceq 1656  wnf 1882  wcel 2164  wrex 3118  {crab 3121  Vcvv 3414  cin 3797   ciun 4742   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910  cr 10258   + caddc 10262  *cxr 10397   < clt 10398  cmin 10592  cq 12078  (,)cioo 12470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-ioo 12474
This theorem is referenced by:  smfaddlem2  41764
  Copyright terms: Public domain W3C validator