Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmqusker Structured version   Visualization version   GIF version

Theorem lmhmqusker 33369
Description: A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmhmqusker.1 0 = (0g𝐻)
lmhmqusker.f (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
lmhmqusker.k 𝐾 = (𝐹 “ { 0 })
lmhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
lmhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
lmhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
lmhmqusker (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem lmhmqusker
Dummy variables 𝑥 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2734 . . 3 ( ·𝑠𝑄) = ( ·𝑠𝑄)
3 eqid 2734 . . 3 ( ·𝑠𝐻) = ( ·𝑠𝐻)
4 eqid 2734 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
5 eqid 2734 . . 3 (Scalar‘𝐻) = (Scalar‘𝐻)
6 eqid 2734 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
7 lmhmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
8 eqid 2734 . . . 4 (Base‘𝐺) = (Base‘𝐺)
9 lmhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
10 lmhmlmod1 20978 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝐺 ∈ LMod)
12 lmhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
13 lmhmqusker.1 . . . . . 6 0 = (0g𝐻)
14 eqid 2734 . . . . . 6 (LSubSp‘𝐺) = (LSubSp‘𝐺)
1512, 13, 14lmhmkerlss 20996 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺))
169, 15syl 17 . . . 4 (𝜑𝐾 ∈ (LSubSp‘𝐺))
177, 8, 11, 16quslmod 33310 . . 3 (𝜑𝑄 ∈ LMod)
18 lmhmlmod2 20977 . . . 4 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod)
199, 18syl 17 . . 3 (𝜑𝐻 ∈ LMod)
20 eqid 2734 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
2120, 5lmhmsca 20975 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺))
229, 21syl 17 . . . 4 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺))
237a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
248a1i 11 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7435 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 11, 20quss 17547 . . . 4 (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄))
2722, 26eqtrd 2769 . . 3 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄))
28 lmghm 20976 . . . . . 6 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
299, 28syl 17 . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
30 lmhmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 lmhmqusker.s . . . . 5 (𝜑 → ran 𝐹 = (Base‘𝐻))
3213, 29, 12, 7, 30, 31ghmqusker 19257 . . . 4 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
33 gimghm 19234 . . . 4 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻))
3432, 33syl 17 . . 3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
3513ghmker 19212 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3629, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3712, 36eqeltrid 2837 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
38 nsgsubg 19128 . . . . . . . . . . . . 13 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
39 eqid 2734 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
408, 39eqger 19148 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4137, 38, 403syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4241ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
43 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ (Base‘𝑄))
4423, 24, 25, 11qusbas 17546 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4544ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4643, 45eleqtrrd 2836 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
47 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥𝑟)
48 qsel 8805 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
4942, 46, 47, 48syl3anc 1372 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5049oveq2d 7416 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)))
51 eqid 2734 . . . . . . . . . 10 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
52 eqid 2734 . . . . . . . . . 10 ( ·𝑠𝐺) = ( ·𝑠𝐺)
5311ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐺 ∈ LMod)
5416ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐾 ∈ (LSubSp‘𝐺))
55 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄)))
5626fveq2d 6877 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5756ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5855, 57eleqtrrd 2836 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺)))
5941qsss 8787 . . . . . . . . . . . . . . 15 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
6044, 59eqsstrrd 3992 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
6160sselda 3956 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
6261elpwid 4582 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
6362ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ⊆ (Base‘𝐺))
6463, 47sseldd 3957 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
658, 39, 51, 52, 53, 54, 58, 7, 2, 64qusvsval 33304 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6650, 65eqtrd 2769 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6766fveq2d 6877 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)))
6829ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
698, 20, 52, 51lmodvscl 20822 . . . . . . . . 9 ((𝐺 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7053, 58, 64, 69syl3anc 1372 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7113, 68, 12, 7, 30, 70ghmquskerlem1 19253 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠𝐺)𝑥)))
729ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻))
7320, 51, 8, 52, 3lmhmlin 20980 . . . . . . . 8 ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7472, 58, 64, 73syl3anc 1372 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7567, 71, 743eqtrd 2773 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
76 simpr 484 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
7776oveq2d 7416 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐻)(𝐽𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7875, 77eqtr4d 2772 . . . . 5 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
7929ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
80 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
8113, 79, 12, 7, 30, 80ghmquskerlem2 19255 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8278, 81r19.29a 3146 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
8382anasss 466 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
841, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83islmhmd 20984 . 2 (𝜑𝐽 ∈ (𝑄 LMHom 𝐻))
85 eqid 2734 . . . 4 (Base‘𝐻) = (Base‘𝐻)
861, 85gimf1o 19233 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
8732, 86syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
881, 85islmim 21007 . 2 (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
8984, 87, 88sylanbrc 583 1 (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924  𝒫 cpw 4573  {csn 4599   cuni 4881  cmpt 5199  ccnv 5651  ran crn 5653  cima 5655  1-1-ontowf1o 6527  cfv 6528  (class class class)co 7400   Er wer 8711  [cec 8712   / cqs 8713  Basecbs 17215  Scalarcsca 17261   ·𝑠 cvsca 17262  0gc0g 17440   /s cqus 17506  SubGrpcsubg 19090  NrmSGrpcnsg 19091   ~QG cqg 19092   GrpHom cghm 19182   GrpIso cgim 19227  LModclmod 20804  LSubSpclss 20875   LMHom clmhm 20964   LMIso clmim 20965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-0g 17442  df-imas 17509  df-qus 17510  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-gim 19229  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-lmod 20806  df-lss 20876  df-lmhm 20967  df-lmim 20968
This theorem is referenced by:  lmicqusker  33370  algextdeglem4  33689
  Copyright terms: Public domain W3C validator