Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . 3
⊢
(Base‘𝑄) =
(Base‘𝑄) |
2 | | eqid 2731 |
. . 3
⊢ (
·𝑠 ‘𝑄) = ( ·𝑠
‘𝑄) |
3 | | eqid 2731 |
. . 3
⊢ (
·𝑠 ‘𝐻) = ( ·𝑠
‘𝐻) |
4 | | eqid 2731 |
. . 3
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
5 | | eqid 2731 |
. . 3
⊢
(Scalar‘𝐻) =
(Scalar‘𝐻) |
6 | | eqid 2731 |
. . 3
⊢
(Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄)) |
7 | | lmhmqusker.q |
. . . 4
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
8 | | eqid 2731 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
9 | | lmhmqusker.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) |
10 | | lmhmlmod1 20789 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ LMod) |
12 | | lmhmqusker.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
13 | | lmhmqusker.1 |
. . . . . 6
⊢ 0 =
(0g‘𝐻) |
14 | | eqid 2731 |
. . . . . 6
⊢
(LSubSp‘𝐺) =
(LSubSp‘𝐺) |
15 | 12, 13, 14 | lmhmkerlss 20807 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺)) |
16 | 9, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (LSubSp‘𝐺)) |
17 | 7, 8, 11, 16 | quslmod 32744 |
. . 3
⊢ (𝜑 → 𝑄 ∈ LMod) |
18 | | lmhmlmod2 20788 |
. . . 4
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod) |
19 | 9, 18 | syl 17 |
. . 3
⊢ (𝜑 → 𝐻 ∈ LMod) |
20 | | eqid 2731 |
. . . . . 6
⊢
(Scalar‘𝐺) =
(Scalar‘𝐺) |
21 | 20, 5 | lmhmsca 20786 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺)) |
22 | 9, 21 | syl 17 |
. . . 4
⊢ (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺)) |
23 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
24 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
25 | | ovexd 7447 |
. . . . 5
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
26 | 23, 24, 25, 11, 20 | quss 17497 |
. . . 4
⊢ (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄)) |
27 | 22, 26 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄)) |
28 | | lmghm 20787 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
29 | 9, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
30 | | lmhmqusker.j |
. . . . 5
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
31 | | lmhmqusker.s |
. . . . 5
⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
32 | 13, 29, 12, 7, 30, 31 | ghmqusker 32807 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) |
33 | | gimghm 19179 |
. . . 4
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
34 | 32, 33 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
35 | 13 | ghmker 19157 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
36 | 29, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
37 | 12, 36 | eqeltrid 2836 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
38 | | nsgsubg 19075 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
39 | | eqid 2731 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
40 | 8, 39 | eqger 19095 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
41 | 37, 38, 40 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
42 | 41 | ad4antr 729 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
43 | | simpllr 773 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ∈ (Base‘𝑄)) |
44 | 23, 24, 25, 11 | qusbas 17496 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
45 | 44 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
46 | 43, 45 | eleqtrrd 2835 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
47 | | simplr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ 𝑟) |
48 | | qsel 8794 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
49 | 42, 46, 47, 48 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
50 | 49 | oveq2d 7428 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)𝑟) = (𝑘( ·𝑠
‘𝑄)[𝑥](𝐺 ~QG 𝐾))) |
51 | | eqid 2731 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)) |
52 | | eqid 2731 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝐺) = ( ·𝑠
‘𝐺) |
53 | 11 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐺 ∈ LMod) |
54 | 16 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐾 ∈ (LSubSp‘𝐺)) |
55 | | simp-4r 781 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄))) |
56 | 26 | fveq2d 6895 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄))) |
57 | 56 | ad4antr 729 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (Base‘(Scalar‘𝐺)) =
(Base‘(Scalar‘𝑄))) |
58 | 55, 57 | eleqtrrd 2835 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺))) |
59 | 41 | qsss 8776 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺)) |
60 | 44, 59 | eqsstrrd 4021 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
61 | 60 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
62 | 61 | elpwid 4611 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
63 | 62 | ad5ant13 754 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ⊆ (Base‘𝐺)) |
64 | 63, 47 | sseldd 3983 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
65 | 8, 39, 51, 52, 53, 54, 58, 7, 2, 64 | qusvsval 32738 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) |
66 | 50, 65 | eqtrd 2771 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)𝑟) = [(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) |
67 | 66 | fveq2d 6895 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾))) |
68 | 29 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
69 | 8, 20, 52, 51 | lmodvscl 20633 |
. . . . . . . . 9
⊢ ((𝐺 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠
‘𝐺)𝑥) ∈ (Base‘𝐺)) |
70 | 53, 58, 64, 69 | syl3anc 1370 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝐺)𝑥) ∈ (Base‘𝐺)) |
71 | 13, 68, 12, 7, 30, 70 | ghmquskerlem1 32803 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘[(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥))) |
72 | 9 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻)) |
73 | 20, 51, 8, 52, 3 | lmhmlin 20791 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
74 | 72, 58, 64, 73 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
75 | 67, 71, 74 | 3eqtrd 2775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
76 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
77 | 76 | oveq2d 7428 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
78 | 75, 77 | eqtr4d 2774 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
79 | 29 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
80 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
81 | 13, 79, 12, 7, 30, 80 | ghmquskerlem2 32805 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
82 | 78, 81 | r19.29a 3161 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
83 | 82 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
84 | 1, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83 | islmhmd 20795 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 LMHom 𝐻)) |
85 | | eqid 2731 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
86 | 1, 85 | gimf1o 19178 |
. . 3
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
87 | 32, 86 | syl 17 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
88 | 1, 85 | islmim 20818 |
. 2
⊢ (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
89 | 84, 87, 88 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 LMIso 𝐻)) |