Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmqusker Structured version   Visualization version   GIF version

Theorem lmhmqusker 33410
Description: A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmhmqusker.1 0 = (0g𝐻)
lmhmqusker.f (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
lmhmqusker.k 𝐾 = (𝐹 “ { 0 })
lmhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
lmhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
lmhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
lmhmqusker (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem lmhmqusker
Dummy variables 𝑥 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2740 . . 3 ( ·𝑠𝑄) = ( ·𝑠𝑄)
3 eqid 2740 . . 3 ( ·𝑠𝐻) = ( ·𝑠𝐻)
4 eqid 2740 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
5 eqid 2740 . . 3 (Scalar‘𝐻) = (Scalar‘𝐻)
6 eqid 2740 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
7 lmhmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
8 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
9 lmhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
10 lmhmlmod1 21055 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝐺 ∈ LMod)
12 lmhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
13 lmhmqusker.1 . . . . . 6 0 = (0g𝐻)
14 eqid 2740 . . . . . 6 (LSubSp‘𝐺) = (LSubSp‘𝐺)
1512, 13, 14lmhmkerlss 21073 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺))
169, 15syl 17 . . . 4 (𝜑𝐾 ∈ (LSubSp‘𝐺))
177, 8, 11, 16quslmod 33351 . . 3 (𝜑𝑄 ∈ LMod)
18 lmhmlmod2 21054 . . . 4 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod)
199, 18syl 17 . . 3 (𝜑𝐻 ∈ LMod)
20 eqid 2740 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
2120, 5lmhmsca 21052 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺))
229, 21syl 17 . . . 4 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺))
237a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
248a1i 11 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7483 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 11, 20quss 17606 . . . 4 (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄))
2722, 26eqtrd 2780 . . 3 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄))
28 lmghm 21053 . . . . . 6 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
299, 28syl 17 . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
30 lmhmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 lmhmqusker.s . . . . 5 (𝜑 → ran 𝐹 = (Base‘𝐻))
3213, 29, 12, 7, 30, 31ghmqusker 19327 . . . 4 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
33 gimghm 19304 . . . 4 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻))
3432, 33syl 17 . . 3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
3513ghmker 19282 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3629, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3712, 36eqeltrid 2848 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
38 nsgsubg 19198 . . . . . . . . . . . . 13 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
39 eqid 2740 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
408, 39eqger 19218 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4137, 38, 403syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4241ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
43 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ (Base‘𝑄))
4423, 24, 25, 11qusbas 17605 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4544ad4antr 731 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4643, 45eleqtrrd 2847 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
47 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥𝑟)
48 qsel 8854 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
4942, 46, 47, 48syl3anc 1371 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5049oveq2d 7464 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)))
51 eqid 2740 . . . . . . . . . 10 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
52 eqid 2740 . . . . . . . . . 10 ( ·𝑠𝐺) = ( ·𝑠𝐺)
5311ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐺 ∈ LMod)
5416ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐾 ∈ (LSubSp‘𝐺))
55 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄)))
5626fveq2d 6924 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5756ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5855, 57eleqtrrd 2847 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺)))
5941qsss 8836 . . . . . . . . . . . . . . 15 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
6044, 59eqsstrrd 4048 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
6160sselda 4008 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
6261elpwid 4631 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
6362ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ⊆ (Base‘𝐺))
6463, 47sseldd 4009 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
658, 39, 51, 52, 53, 54, 58, 7, 2, 64qusvsval 33345 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6650, 65eqtrd 2780 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6766fveq2d 6924 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)))
6829ad4antr 731 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
698, 20, 52, 51lmodvscl 20898 . . . . . . . . 9 ((𝐺 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7053, 58, 64, 69syl3anc 1371 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7113, 68, 12, 7, 30, 70ghmquskerlem1 19323 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠𝐺)𝑥)))
729ad4antr 731 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻))
7320, 51, 8, 52, 3lmhmlin 21057 . . . . . . . 8 ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7472, 58, 64, 73syl3anc 1371 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7567, 71, 743eqtrd 2784 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
76 simpr 484 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
7776oveq2d 7464 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐻)(𝐽𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7875, 77eqtr4d 2783 . . . . 5 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
7929ad2antrr 725 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
80 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
8113, 79, 12, 7, 30, 80ghmquskerlem2 19325 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8278, 81r19.29a 3168 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
8382anasss 466 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
841, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83islmhmd 21061 . 2 (𝜑𝐽 ∈ (𝑄 LMHom 𝐻))
85 eqid 2740 . . . 4 (Base‘𝐻) = (Base‘𝐻)
861, 85gimf1o 19303 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
8732, 86syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
881, 85islmim 21084 . 2 (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
8984, 87, 88sylanbrc 582 1 (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761   / cqs 8762  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   /s cqus 17565  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162   GrpHom cghm 19252   GrpIso cgim 19297  LModclmod 20880  LSubSpclss 20952   LMHom clmhm 21041   LMIso clmim 21042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-gim 19299  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lmhm 21044  df-lmim 21045
This theorem is referenced by:  lmicqusker  33411  algextdeglem4  33711
  Copyright terms: Public domain W3C validator