Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmqusker Structured version   Visualization version   GIF version

Theorem lmhmqusker 33437
Description: A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmhmqusker.1 0 = (0g𝐻)
lmhmqusker.f (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
lmhmqusker.k 𝐾 = (𝐹 “ { 0 })
lmhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
lmhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
lmhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
lmhmqusker (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem lmhmqusker
Dummy variables 𝑥 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2736 . . 3 ( ·𝑠𝑄) = ( ·𝑠𝑄)
3 eqid 2736 . . 3 ( ·𝑠𝐻) = ( ·𝑠𝐻)
4 eqid 2736 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
5 eqid 2736 . . 3 (Scalar‘𝐻) = (Scalar‘𝐻)
6 eqid 2736 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
7 lmhmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
8 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
9 lmhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
10 lmhmlmod1 20996 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝐺 ∈ LMod)
12 lmhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
13 lmhmqusker.1 . . . . . 6 0 = (0g𝐻)
14 eqid 2736 . . . . . 6 (LSubSp‘𝐺) = (LSubSp‘𝐺)
1512, 13, 14lmhmkerlss 21014 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺))
169, 15syl 17 . . . 4 (𝜑𝐾 ∈ (LSubSp‘𝐺))
177, 8, 11, 16quslmod 33378 . . 3 (𝜑𝑄 ∈ LMod)
18 lmhmlmod2 20995 . . . 4 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod)
199, 18syl 17 . . 3 (𝜑𝐻 ∈ LMod)
20 eqid 2736 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
2120, 5lmhmsca 20993 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺))
229, 21syl 17 . . . 4 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺))
237a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
248a1i 11 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7445 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 11, 20quss 17565 . . . 4 (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄))
2722, 26eqtrd 2771 . . 3 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄))
28 lmghm 20994 . . . . . 6 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
299, 28syl 17 . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
30 lmhmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 lmhmqusker.s . . . . 5 (𝜑 → ran 𝐹 = (Base‘𝐻))
3213, 29, 12, 7, 30, 31ghmqusker 19275 . . . 4 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
33 gimghm 19252 . . . 4 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻))
3432, 33syl 17 . . 3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
3513ghmker 19230 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3629, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3712, 36eqeltrid 2839 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
38 nsgsubg 19146 . . . . . . . . . . . . 13 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
39 eqid 2736 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
408, 39eqger 19166 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4137, 38, 403syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4241ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
43 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ (Base‘𝑄))
4423, 24, 25, 11qusbas 17564 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4544ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4643, 45eleqtrrd 2838 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
47 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥𝑟)
48 qsel 8815 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
4942, 46, 47, 48syl3anc 1373 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5049oveq2d 7426 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)))
51 eqid 2736 . . . . . . . . . 10 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
52 eqid 2736 . . . . . . . . . 10 ( ·𝑠𝐺) = ( ·𝑠𝐺)
5311ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐺 ∈ LMod)
5416ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐾 ∈ (LSubSp‘𝐺))
55 simp-4r 783 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄)))
5626fveq2d 6885 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5756ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5855, 57eleqtrrd 2838 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺)))
5941qsss 8797 . . . . . . . . . . . . . . 15 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
6044, 59eqsstrrd 3999 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
6160sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
6261elpwid 4589 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
6362ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ⊆ (Base‘𝐺))
6463, 47sseldd 3964 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
658, 39, 51, 52, 53, 54, 58, 7, 2, 64qusvsval 33372 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6650, 65eqtrd 2771 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6766fveq2d 6885 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)))
6829ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
698, 20, 52, 51lmodvscl 20840 . . . . . . . . 9 ((𝐺 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7053, 58, 64, 69syl3anc 1373 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7113, 68, 12, 7, 30, 70ghmquskerlem1 19271 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠𝐺)𝑥)))
729ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻))
7320, 51, 8, 52, 3lmhmlin 20998 . . . . . . . 8 ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7472, 58, 64, 73syl3anc 1373 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7567, 71, 743eqtrd 2775 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
76 simpr 484 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
7776oveq2d 7426 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐻)(𝐽𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7875, 77eqtr4d 2774 . . . . 5 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
7929ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
80 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
8113, 79, 12, 7, 30, 80ghmquskerlem2 19273 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8278, 81r19.29a 3149 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
8382anasss 466 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
841, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83islmhmd 21002 . 2 (𝜑𝐽 ∈ (𝑄 LMHom 𝐻))
85 eqid 2736 . . . 4 (Base‘𝐻) = (Base‘𝐻)
861, 85gimf1o 19251 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
8732, 86syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
881, 85islmim 21025 . 2 (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
8984, 87, 88sylanbrc 583 1 (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606   cuni 4888  cmpt 5206  ccnv 5658  ran crn 5660  cima 5662  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410   Er wer 8721  [cec 8722   / cqs 8723  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   /s cqus 17524  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110   GrpHom cghm 19200   GrpIso cgim 19245  LModclmod 20822  LSubSpclss 20893   LMHom clmhm 20982   LMIso clmim 20983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-gim 19247  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lmhm 20985  df-lmim 20986
This theorem is referenced by:  lmicqusker  33438  algextdeglem4  33759
  Copyright terms: Public domain W3C validator