| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 2 | | eqid 2736 |
. . 3
⊢ (
·𝑠 ‘𝑄) = ( ·𝑠
‘𝑄) |
| 3 | | eqid 2736 |
. . 3
⊢ (
·𝑠 ‘𝐻) = ( ·𝑠
‘𝐻) |
| 4 | | eqid 2736 |
. . 3
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
| 5 | | eqid 2736 |
. . 3
⊢
(Scalar‘𝐻) =
(Scalar‘𝐻) |
| 6 | | eqid 2736 |
. . 3
⊢
(Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄)) |
| 7 | | lmhmqusker.q |
. . . 4
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
| 8 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 9 | | lmhmqusker.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐺 LMHom 𝐻)) |
| 10 | | lmhmlmod1 20996 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ LMod) |
| 12 | | lmhmqusker.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 13 | | lmhmqusker.1 |
. . . . . 6
⊢ 0 =
(0g‘𝐻) |
| 14 | | eqid 2736 |
. . . . . 6
⊢
(LSubSp‘𝐺) =
(LSubSp‘𝐺) |
| 15 | 12, 13, 14 | lmhmkerlss 21014 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺)) |
| 16 | 9, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (LSubSp‘𝐺)) |
| 17 | 7, 8, 11, 16 | quslmod 33378 |
. . 3
⊢ (𝜑 → 𝑄 ∈ LMod) |
| 18 | | lmhmlmod2 20995 |
. . . 4
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod) |
| 19 | 9, 18 | syl 17 |
. . 3
⊢ (𝜑 → 𝐻 ∈ LMod) |
| 20 | | eqid 2736 |
. . . . . 6
⊢
(Scalar‘𝐺) =
(Scalar‘𝐺) |
| 21 | 20, 5 | lmhmsca 20993 |
. . . . 5
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺)) |
| 22 | 9, 21 | syl 17 |
. . . 4
⊢ (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺)) |
| 23 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
| 24 | 8 | a1i 11 |
. . . . 5
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
| 25 | | ovexd 7445 |
. . . . 5
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
| 26 | 23, 24, 25, 11, 20 | quss 17565 |
. . . 4
⊢ (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄)) |
| 27 | 22, 26 | eqtrd 2771 |
. . 3
⊢ (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄)) |
| 28 | | lmghm 20994 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 29 | 9, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 30 | | lmhmqusker.j |
. . . . 5
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
| 31 | | lmhmqusker.s |
. . . . 5
⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
| 32 | 13, 29, 12, 7, 30, 31 | ghmqusker 19275 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) |
| 33 | | gimghm 19252 |
. . . 4
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
| 34 | 32, 33 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
| 35 | 13 | ghmker 19230 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 36 | 29, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
| 37 | 12, 36 | eqeltrid 2839 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
| 38 | | nsgsubg 19146 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
| 39 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
| 40 | 8, 39 | eqger 19166 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 41 | 37, 38, 40 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 42 | 41 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
| 43 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ∈ (Base‘𝑄)) |
| 44 | 23, 24, 25, 11 | qusbas 17564 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 45 | 44 | ad4antr 732 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
| 46 | 43, 45 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
| 47 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ 𝑟) |
| 48 | | qsel 8815 |
. . . . . . . . . . 11
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
| 49 | 42, 46, 47, 48 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
| 50 | 49 | oveq2d 7426 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)𝑟) = (𝑘( ·𝑠
‘𝑄)[𝑥](𝐺 ~QG 𝐾))) |
| 51 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺)) |
| 52 | | eqid 2736 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝐺) = ( ·𝑠
‘𝐺) |
| 53 | 11 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐺 ∈ LMod) |
| 54 | 16 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐾 ∈ (LSubSp‘𝐺)) |
| 55 | | simp-4r 783 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄))) |
| 56 | 26 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄))) |
| 57 | 56 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (Base‘(Scalar‘𝐺)) =
(Base‘(Scalar‘𝑄))) |
| 58 | 55, 57 | eleqtrrd 2838 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺))) |
| 59 | 41 | qsss 8797 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺)) |
| 60 | 44, 59 | eqsstrrd 3999 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
| 61 | 60 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
| 62 | 61 | elpwid 4589 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
| 63 | 62 | ad5ant13 756 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑟 ⊆ (Base‘𝐺)) |
| 64 | 63, 47 | sseldd 3964 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
| 65 | 8, 39, 51, 52, 53, 54, 58, 7, 2, 64 | qusvsval 33372 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) |
| 66 | 50, 65 | eqtrd 2771 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝑄)𝑟) = [(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) |
| 67 | 66 | fveq2d 6885 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾))) |
| 68 | 29 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 69 | 8, 20, 52, 51 | lmodvscl 20840 |
. . . . . . . . 9
⊢ ((𝐺 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠
‘𝐺)𝑥) ∈ (Base‘𝐺)) |
| 70 | 53, 58, 64, 69 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝐺)𝑥) ∈ (Base‘𝐺)) |
| 71 | 13, 68, 12, 7, 30, 70 | ghmquskerlem1 19271 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘[(𝑘( ·𝑠
‘𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥))) |
| 72 | 9 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻)) |
| 73 | 20, 51, 8, 52, 3 | lmhmlin 20998 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
| 74 | 72, 58, 64, 73 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘(𝑘( ·𝑠
‘𝐺)𝑥)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
| 75 | 67, 71, 74 | 3eqtrd 2775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
| 76 | | simpr 484 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 77 | 76 | oveq2d 7426 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐹‘𝑥))) |
| 78 | 75, 77 | eqtr4d 2774 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑘 ∈
(Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
| 79 | 29 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| 80 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
| 81 | 13, 79, 12, 7, 30, 80 | ghmquskerlem2 19273 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
| 82 | 78, 81 | r19.29a 3149 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
| 83 | 82 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠
‘𝑄)𝑟)) = (𝑘( ·𝑠
‘𝐻)(𝐽‘𝑟))) |
| 84 | 1, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83 | islmhmd 21002 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 LMHom 𝐻)) |
| 85 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 86 | 1, 85 | gimf1o 19251 |
. . 3
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
| 87 | 32, 86 | syl 17 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
| 88 | 1, 85 | islmim 21025 |
. 2
⊢ (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
| 89 | 84, 87, 88 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 LMIso 𝐻)) |