Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
2 | | eqid 2731 |
. . 3
β’ (
Β·π βπ) = ( Β·π
βπ) |
3 | | eqid 2731 |
. . 3
β’ (
Β·π βπ») = ( Β·π
βπ») |
4 | | eqid 2731 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
5 | | eqid 2731 |
. . 3
β’
(Scalarβπ») =
(Scalarβπ») |
6 | | eqid 2731 |
. . 3
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
7 | | lmhmqusker.q |
. . . 4
β’ π = (πΊ /s (πΊ ~QG πΎ)) |
8 | | eqid 2731 |
. . . 4
β’
(BaseβπΊ) =
(BaseβπΊ) |
9 | | lmhmqusker.f |
. . . . 5
β’ (π β πΉ β (πΊ LMHom π»)) |
10 | | lmhmlmod1 20789 |
. . . . 5
β’ (πΉ β (πΊ LMHom π») β πΊ β LMod) |
11 | 9, 10 | syl 17 |
. . . 4
β’ (π β πΊ β LMod) |
12 | | lmhmqusker.k |
. . . . . 6
β’ πΎ = (β‘πΉ β { 0 }) |
13 | | lmhmqusker.1 |
. . . . . 6
β’ 0 =
(0gβπ») |
14 | | eqid 2731 |
. . . . . 6
β’
(LSubSpβπΊ) =
(LSubSpβπΊ) |
15 | 12, 13, 14 | lmhmkerlss 20807 |
. . . . 5
β’ (πΉ β (πΊ LMHom π») β πΎ β (LSubSpβπΊ)) |
16 | 9, 15 | syl 17 |
. . . 4
β’ (π β πΎ β (LSubSpβπΊ)) |
17 | 7, 8, 11, 16 | quslmod 32740 |
. . 3
β’ (π β π β LMod) |
18 | | lmhmlmod2 20788 |
. . . 4
β’ (πΉ β (πΊ LMHom π») β π» β LMod) |
19 | 9, 18 | syl 17 |
. . 3
β’ (π β π» β LMod) |
20 | | eqid 2731 |
. . . . . 6
β’
(ScalarβπΊ) =
(ScalarβπΊ) |
21 | 20, 5 | lmhmsca 20786 |
. . . . 5
β’ (πΉ β (πΊ LMHom π») β (Scalarβπ») = (ScalarβπΊ)) |
22 | 9, 21 | syl 17 |
. . . 4
β’ (π β (Scalarβπ») = (ScalarβπΊ)) |
23 | 7 | a1i 11 |
. . . . 5
β’ (π β π = (πΊ /s (πΊ ~QG πΎ))) |
24 | 8 | a1i 11 |
. . . . 5
β’ (π β (BaseβπΊ) = (BaseβπΊ)) |
25 | | ovexd 7447 |
. . . . 5
β’ (π β (πΊ ~QG πΎ) β V) |
26 | 23, 24, 25, 11, 20 | quss 17497 |
. . . 4
β’ (π β (ScalarβπΊ) = (Scalarβπ)) |
27 | 22, 26 | eqtrd 2771 |
. . 3
β’ (π β (Scalarβπ») = (Scalarβπ)) |
28 | | lmghm 20787 |
. . . . . 6
β’ (πΉ β (πΊ LMHom π») β πΉ β (πΊ GrpHom π»)) |
29 | 9, 28 | syl 17 |
. . . . 5
β’ (π β πΉ β (πΊ GrpHom π»)) |
30 | | lmhmqusker.j |
. . . . 5
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΉ β π)) |
31 | | lmhmqusker.s |
. . . . 5
β’ (π β ran πΉ = (Baseβπ»)) |
32 | 13, 29, 12, 7, 30, 31 | ghmqusker 32803 |
. . . 4
β’ (π β π½ β (π GrpIso π»)) |
33 | | gimghm 19179 |
. . . 4
β’ (π½ β (π GrpIso π») β π½ β (π GrpHom π»)) |
34 | 32, 33 | syl 17 |
. . 3
β’ (π β π½ β (π GrpHom π»)) |
35 | 13 | ghmker 19157 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (πΊ GrpHom π») β (β‘πΉ β { 0 }) β
(NrmSGrpβπΊ)) |
36 | 29, 35 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (β‘πΉ β { 0 }) β
(NrmSGrpβπΊ)) |
37 | 12, 36 | eqeltrid 2836 |
. . . . . . . . . . . . 13
β’ (π β πΎ β (NrmSGrpβπΊ)) |
38 | | nsgsubg 19075 |
. . . . . . . . . . . . 13
β’ (πΎ β (NrmSGrpβπΊ) β πΎ β (SubGrpβπΊ)) |
39 | | eqid 2731 |
. . . . . . . . . . . . . 14
β’ (πΊ ~QG πΎ) = (πΊ ~QG πΎ) |
40 | 8, 39 | eqger 19095 |
. . . . . . . . . . . . 13
β’ (πΎ β (SubGrpβπΊ) β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
41 | 37, 38, 40 | 3syl 18 |
. . . . . . . . . . . 12
β’ (π β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
42 | 41 | ad4antr 729 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
43 | | simpllr 773 |
. . . . . . . . . . . 12
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π β (Baseβπ)) |
44 | 23, 24, 25, 11 | qusbas 17496 |
. . . . . . . . . . . . 13
β’ (π β ((BaseβπΊ) / (πΊ ~QG πΎ)) = (Baseβπ)) |
45 | 44 | ad4antr 729 |
. . . . . . . . . . . 12
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β ((BaseβπΊ) / (πΊ ~QG πΎ)) = (Baseβπ)) |
46 | 43, 45 | eleqtrrd 2835 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π β ((BaseβπΊ) / (πΊ ~QG πΎ))) |
47 | | simplr 766 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π₯ β π) |
48 | | qsel 8793 |
. . . . . . . . . . 11
β’ (((πΊ ~QG πΎ) Er (BaseβπΊ) β§ π β ((BaseβπΊ) / (πΊ ~QG πΎ)) β§ π₯ β π) β π = [π₯](πΊ ~QG πΎ)) |
49 | 42, 46, 47, 48 | syl3anc 1370 |
. . . . . . . . . 10
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π = [π₯](πΊ ~QG πΎ)) |
50 | 49 | oveq2d 7428 |
. . . . . . . . 9
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π( Β·π
βπ)π) = (π( Β·π
βπ)[π₯](πΊ ~QG πΎ))) |
51 | | eqid 2731 |
. . . . . . . . . 10
β’
(Baseβ(ScalarβπΊ)) = (Baseβ(ScalarβπΊ)) |
52 | | eqid 2731 |
. . . . . . . . . 10
β’ (
Β·π βπΊ) = ( Β·π
βπΊ) |
53 | 11 | ad4antr 729 |
. . . . . . . . . 10
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β πΊ β LMod) |
54 | 16 | ad4antr 729 |
. . . . . . . . . 10
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β πΎ β (LSubSpβπΊ)) |
55 | | simp-4r 781 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π β (Baseβ(Scalarβπ))) |
56 | 26 | fveq2d 6896 |
. . . . . . . . . . . 12
β’ (π β
(Baseβ(ScalarβπΊ)) = (Baseβ(Scalarβπ))) |
57 | 56 | ad4antr 729 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (Baseβ(ScalarβπΊ)) =
(Baseβ(Scalarβπ))) |
58 | 55, 57 | eleqtrrd 2835 |
. . . . . . . . . 10
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π β (Baseβ(ScalarβπΊ))) |
59 | 41 | qsss 8775 |
. . . . . . . . . . . . . . 15
β’ (π β ((BaseβπΊ) / (πΊ ~QG πΎ)) β π« (BaseβπΊ)) |
60 | 44, 59 | eqsstrrd 4022 |
. . . . . . . . . . . . . 14
β’ (π β (Baseβπ) β π«
(BaseβπΊ)) |
61 | 60 | sselda 3983 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (Baseβπ)) β π β π« (BaseβπΊ)) |
62 | 61 | elpwid 4612 |
. . . . . . . . . . . 12
β’ ((π β§ π β (Baseβπ)) β π β (BaseβπΊ)) |
63 | 62 | ad5ant13 754 |
. . . . . . . . . . 11
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π β (BaseβπΊ)) |
64 | 63, 47 | sseldd 3984 |
. . . . . . . . . 10
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π₯ β (BaseβπΊ)) |
65 | 8, 39, 51, 52, 53, 54, 58, 7, 2, 64 | qusvsval 32734 |
. . . . . . . . 9
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π( Β·π
βπ)[π₯](πΊ ~QG πΎ)) = [(π( Β·π
βπΊ)π₯)](πΊ ~QG πΎ)) |
66 | 50, 65 | eqtrd 2771 |
. . . . . . . 8
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π( Β·π
βπ)π) = [(π( Β·π
βπΊ)π₯)](πΊ ~QG πΎ)) |
67 | 66 | fveq2d 6896 |
. . . . . . 7
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½β(π( Β·π
βπ)π)) = (π½β[(π( Β·π
βπΊ)π₯)](πΊ ~QG πΎ))) |
68 | 29 | ad4antr 729 |
. . . . . . . 8
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β πΉ β (πΊ GrpHom π»)) |
69 | 8, 20, 52, 51 | lmodvscl 20633 |
. . . . . . . . 9
β’ ((πΊ β LMod β§ π β
(Baseβ(ScalarβπΊ)) β§ π₯ β (BaseβπΊ)) β (π( Β·π
βπΊ)π₯) β (BaseβπΊ)) |
70 | 53, 58, 64, 69 | syl3anc 1370 |
. . . . . . . 8
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π( Β·π
βπΊ)π₯) β (BaseβπΊ)) |
71 | 13, 68, 12, 7, 30, 70 | ghmquskerlem1 32799 |
. . . . . . 7
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½β[(π( Β·π
βπΊ)π₯)](πΊ ~QG πΎ)) = (πΉβ(π( Β·π
βπΊ)π₯))) |
72 | 9 | ad4antr 729 |
. . . . . . . 8
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β πΉ β (πΊ LMHom π»)) |
73 | 20, 51, 8, 52, 3 | lmhmlin 20791 |
. . . . . . . 8
β’ ((πΉ β (πΊ LMHom π») β§ π β (Baseβ(ScalarβπΊ)) β§ π₯ β (BaseβπΊ)) β (πΉβ(π( Β·π
βπΊ)π₯)) = (π( Β·π
βπ»)(πΉβπ₯))) |
74 | 72, 58, 64, 73 | syl3anc 1370 |
. . . . . . 7
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (πΉβ(π( Β·π
βπΊ)π₯)) = (π( Β·π
βπ»)(πΉβπ₯))) |
75 | 67, 71, 74 | 3eqtrd 2775 |
. . . . . 6
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½β(π( Β·π
βπ)π)) = (π( Β·π
βπ»)(πΉβπ₯))) |
76 | | simpr 484 |
. . . . . . 7
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½βπ) = (πΉβπ₯)) |
77 | 76 | oveq2d 7428 |
. . . . . 6
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π( Β·π
βπ»)(π½βπ)) = (π( Β·π
βπ»)(πΉβπ₯))) |
78 | 75, 77 | eqtr4d 2774 |
. . . . 5
β’
(((((π β§ π β
(Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½β(π( Β·π
βπ)π)) = (π( Β·π
βπ»)(π½βπ))) |
79 | 29 | ad2antrr 723 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β πΉ β (πΊ GrpHom π»)) |
80 | | simpr 484 |
. . . . . 6
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β π β (Baseβπ)) |
81 | 13, 79, 12, 7, 30, 80 | ghmquskerlem2 32801 |
. . . . 5
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β βπ₯ β π (π½βπ) = (πΉβπ₯)) |
82 | 78, 81 | r19.29a 3161 |
. . . 4
β’ (((π β§ π β (Baseβ(Scalarβπ))) β§ π β (Baseβπ)) β (π½β(π( Β·π
βπ)π)) = (π( Β·π
βπ»)(π½βπ))) |
83 | 82 | anasss 466 |
. . 3
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβπ))) β (π½β(π( Β·π
βπ)π)) = (π( Β·π
βπ»)(π½βπ))) |
84 | 1, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83 | islmhmd 20795 |
. 2
β’ (π β π½ β (π LMHom π»)) |
85 | | eqid 2731 |
. . . 4
β’
(Baseβπ») =
(Baseβπ») |
86 | 1, 85 | gimf1o 19178 |
. . 3
β’ (π½ β (π GrpIso π») β π½:(Baseβπ)β1-1-ontoβ(Baseβπ»)) |
87 | 32, 86 | syl 17 |
. 2
β’ (π β π½:(Baseβπ)β1-1-ontoβ(Baseβπ»)) |
88 | 1, 85 | islmim 20818 |
. 2
β’ (π½ β (π LMIso π») β (π½ β (π LMHom π») β§ π½:(Baseβπ)β1-1-ontoβ(Baseβπ»))) |
89 | 84, 87, 88 | sylanbrc 582 |
1
β’ (π β π½ β (π LMIso π»)) |