Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmqusker Structured version   Visualization version   GIF version

Theorem lmhmqusker 33425
Description: A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmhmqusker.1 0 = (0g𝐻)
lmhmqusker.f (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
lmhmqusker.k 𝐾 = (𝐹 “ { 0 })
lmhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
lmhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
lmhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
lmhmqusker (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem lmhmqusker
Dummy variables 𝑥 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2735 . . 3 ( ·𝑠𝑄) = ( ·𝑠𝑄)
3 eqid 2735 . . 3 ( ·𝑠𝐻) = ( ·𝑠𝐻)
4 eqid 2735 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
5 eqid 2735 . . 3 (Scalar‘𝐻) = (Scalar‘𝐻)
6 eqid 2735 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
7 lmhmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
8 eqid 2735 . . . 4 (Base‘𝐺) = (Base‘𝐺)
9 lmhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
10 lmhmlmod1 21050 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝐺 ∈ LMod)
12 lmhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
13 lmhmqusker.1 . . . . . 6 0 = (0g𝐻)
14 eqid 2735 . . . . . 6 (LSubSp‘𝐺) = (LSubSp‘𝐺)
1512, 13, 14lmhmkerlss 21068 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺))
169, 15syl 17 . . . 4 (𝜑𝐾 ∈ (LSubSp‘𝐺))
177, 8, 11, 16quslmod 33366 . . 3 (𝜑𝑄 ∈ LMod)
18 lmhmlmod2 21049 . . . 4 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod)
199, 18syl 17 . . 3 (𝜑𝐻 ∈ LMod)
20 eqid 2735 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
2120, 5lmhmsca 21047 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺))
229, 21syl 17 . . . 4 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺))
237a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
248a1i 11 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7466 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 11, 20quss 17593 . . . 4 (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄))
2722, 26eqtrd 2775 . . 3 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄))
28 lmghm 21048 . . . . . 6 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
299, 28syl 17 . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
30 lmhmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 lmhmqusker.s . . . . 5 (𝜑 → ran 𝐹 = (Base‘𝐻))
3213, 29, 12, 7, 30, 31ghmqusker 19318 . . . 4 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
33 gimghm 19295 . . . 4 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻))
3432, 33syl 17 . . 3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
3513ghmker 19273 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3629, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3712, 36eqeltrid 2843 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
38 nsgsubg 19189 . . . . . . . . . . . . 13 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
39 eqid 2735 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
408, 39eqger 19209 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4137, 38, 403syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4241ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
43 simpllr 776 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ (Base‘𝑄))
4423, 24, 25, 11qusbas 17592 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4544ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4643, 45eleqtrrd 2842 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
47 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥𝑟)
48 qsel 8835 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
4942, 46, 47, 48syl3anc 1370 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5049oveq2d 7447 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)))
51 eqid 2735 . . . . . . . . . 10 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
52 eqid 2735 . . . . . . . . . 10 ( ·𝑠𝐺) = ( ·𝑠𝐺)
5311ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐺 ∈ LMod)
5416ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐾 ∈ (LSubSp‘𝐺))
55 simp-4r 784 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄)))
5626fveq2d 6911 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5756ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5855, 57eleqtrrd 2842 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺)))
5941qsss 8817 . . . . . . . . . . . . . . 15 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
6044, 59eqsstrrd 4035 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
6160sselda 3995 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
6261elpwid 4614 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
6362ad5ant13 757 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ⊆ (Base‘𝐺))
6463, 47sseldd 3996 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
658, 39, 51, 52, 53, 54, 58, 7, 2, 64qusvsval 33360 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6650, 65eqtrd 2775 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6766fveq2d 6911 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)))
6829ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
698, 20, 52, 51lmodvscl 20893 . . . . . . . . 9 ((𝐺 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7053, 58, 64, 69syl3anc 1370 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7113, 68, 12, 7, 30, 70ghmquskerlem1 19314 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠𝐺)𝑥)))
729ad4antr 732 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻))
7320, 51, 8, 52, 3lmhmlin 21052 . . . . . . . 8 ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7472, 58, 64, 73syl3anc 1370 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7567, 71, 743eqtrd 2779 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
76 simpr 484 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
7776oveq2d 7447 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐻)(𝐽𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7875, 77eqtr4d 2778 . . . . 5 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
7929ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
80 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
8113, 79, 12, 7, 30, 80ghmquskerlem2 19316 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8278, 81r19.29a 3160 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
8382anasss 466 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
841, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83islmhmd 21056 . 2 (𝜑𝐽 ∈ (𝑄 LMHom 𝐻))
85 eqid 2735 . . . 4 (Base‘𝐻) = (Base‘𝐻)
861, 85gimf1o 19294 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
8732, 86syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
881, 85islmim 21079 . 2 (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
8984, 87, 88sylanbrc 583 1 (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  ran crn 5690  cima 5692  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431   Er wer 8741  [cec 8742   / cqs 8743  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486   /s cqus 17552  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153   GrpHom cghm 19243   GrpIso cgim 19288  LModclmod 20875  LSubSpclss 20947   LMHom clmhm 21036   LMIso clmim 21037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-gim 19290  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lmim 21040
This theorem is referenced by:  lmicqusker  33426  algextdeglem4  33726
  Copyright terms: Public domain W3C validator