Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmqusker Structured version   Visualization version   GIF version

Theorem lmhmqusker 32809
Description: A surjective module homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
lmhmqusker.1 0 = (0g𝐻)
lmhmqusker.f (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
lmhmqusker.k 𝐾 = (𝐹 “ { 0 })
lmhmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
lmhmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
lmhmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
Assertion
Ref Expression
lmhmqusker (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem lmhmqusker
Dummy variables 𝑥 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2731 . . 3 ( ·𝑠𝑄) = ( ·𝑠𝑄)
3 eqid 2731 . . 3 ( ·𝑠𝐻) = ( ·𝑠𝐻)
4 eqid 2731 . . 3 (Scalar‘𝑄) = (Scalar‘𝑄)
5 eqid 2731 . . 3 (Scalar‘𝐻) = (Scalar‘𝐻)
6 eqid 2731 . . 3 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
7 lmhmqusker.q . . . 4 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
8 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
9 lmhmqusker.f . . . . 5 (𝜑𝐹 ∈ (𝐺 LMHom 𝐻))
10 lmhmlmod1 20789 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐺 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝐺 ∈ LMod)
12 lmhmqusker.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
13 lmhmqusker.1 . . . . . 6 0 = (0g𝐻)
14 eqid 2731 . . . . . 6 (LSubSp‘𝐺) = (LSubSp‘𝐺)
1512, 13, 14lmhmkerlss 20807 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐾 ∈ (LSubSp‘𝐺))
169, 15syl 17 . . . 4 (𝜑𝐾 ∈ (LSubSp‘𝐺))
177, 8, 11, 16quslmod 32744 . . 3 (𝜑𝑄 ∈ LMod)
18 lmhmlmod2 20788 . . . 4 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐻 ∈ LMod)
199, 18syl 17 . . 3 (𝜑𝐻 ∈ LMod)
20 eqid 2731 . . . . . 6 (Scalar‘𝐺) = (Scalar‘𝐺)
2120, 5lmhmsca 20786 . . . . 5 (𝐹 ∈ (𝐺 LMHom 𝐻) → (Scalar‘𝐻) = (Scalar‘𝐺))
229, 21syl 17 . . . 4 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝐺))
237a1i 11 . . . . 5 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
248a1i 11 . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7447 . . . . 5 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 11, 20quss 17497 . . . 4 (𝜑 → (Scalar‘𝐺) = (Scalar‘𝑄))
2722, 26eqtrd 2771 . . 3 (𝜑 → (Scalar‘𝐻) = (Scalar‘𝑄))
28 lmghm 20787 . . . . . 6 (𝐹 ∈ (𝐺 LMHom 𝐻) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
299, 28syl 17 . . . . 5 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
30 lmhmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
31 lmhmqusker.s . . . . 5 (𝜑 → ran 𝐹 = (Base‘𝐻))
3213, 29, 12, 7, 30, 31ghmqusker 32807 . . . 4 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
33 gimghm 19179 . . . 4 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽 ∈ (𝑄 GrpHom 𝐻))
3432, 33syl 17 . . 3 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
3513ghmker 19157 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3629, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
3712, 36eqeltrid 2836 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
38 nsgsubg 19075 . . . . . . . . . . . . 13 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
39 eqid 2731 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
408, 39eqger 19095 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4137, 38, 403syl 18 . . . . . . . . . . . 12 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
4241ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
43 simpllr 773 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ (Base‘𝑄))
4423, 24, 25, 11qusbas 17496 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4544ad4antr 729 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
4643, 45eleqtrrd 2835 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
47 simplr 766 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥𝑟)
48 qsel 8794 . . . . . . . . . . 11 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
4942, 46, 47, 48syl3anc 1370 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5049oveq2d 7428 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)))
51 eqid 2731 . . . . . . . . . 10 (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝐺))
52 eqid 2731 . . . . . . . . . 10 ( ·𝑠𝐺) = ( ·𝑠𝐺)
5311ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐺 ∈ LMod)
5416ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐾 ∈ (LSubSp‘𝐺))
55 simp-4r 781 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝑄)))
5626fveq2d 6895 . . . . . . . . . . . 12 (𝜑 → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5756ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (Base‘(Scalar‘𝐺)) = (Base‘(Scalar‘𝑄)))
5855, 57eleqtrrd 2835 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑘 ∈ (Base‘(Scalar‘𝐺)))
5941qsss 8776 . . . . . . . . . . . . . . 15 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
6044, 59eqsstrrd 4021 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
6160sselda 3982 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
6261elpwid 4611 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
6362ad5ant13 754 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑟 ⊆ (Base‘𝐺))
6463, 47sseldd 3983 . . . . . . . . . 10 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
658, 39, 51, 52, 53, 54, 58, 7, 2, 64qusvsval 32738 . . . . . . . . 9 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)[𝑥](𝐺 ~QG 𝐾)) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6650, 65eqtrd 2771 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝑄)𝑟) = [(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾))
6766fveq2d 6895 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)))
6829ad4antr 729 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
698, 20, 52, 51lmodvscl 20633 . . . . . . . . 9 ((𝐺 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7053, 58, 64, 69syl3anc 1370 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐺)𝑥) ∈ (Base‘𝐺))
7113, 68, 12, 7, 30, 70ghmquskerlem1 32803 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘[(𝑘( ·𝑠𝐺)𝑥)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑘( ·𝑠𝐺)𝑥)))
729ad4antr 729 . . . . . . . 8 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 LMHom 𝐻))
7320, 51, 8, 52, 3lmhmlin 20791 . . . . . . . 8 ((𝐹 ∈ (𝐺 LMHom 𝐻) ∧ 𝑘 ∈ (Base‘(Scalar‘𝐺)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7472, 58, 64, 73syl3anc 1370 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹‘(𝑘( ·𝑠𝐺)𝑥)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7567, 71, 743eqtrd 2775 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
76 simpr 484 . . . . . . 7 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
7776oveq2d 7428 . . . . . 6 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑘( ·𝑠𝐻)(𝐽𝑟)) = (𝑘( ·𝑠𝐻)(𝐹𝑥)))
7875, 77eqtr4d 2774 . . . . 5 (((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
7929ad2antrr 723 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
80 simpr 484 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
8113, 79, 12, 7, 30, 80ghmquskerlem2 32805 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8278, 81r19.29a 3161 . . . 4 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑄))) ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
8382anasss 466 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑄)) ∧ 𝑟 ∈ (Base‘𝑄))) → (𝐽‘(𝑘( ·𝑠𝑄)𝑟)) = (𝑘( ·𝑠𝐻)(𝐽𝑟)))
841, 2, 3, 4, 5, 6, 17, 19, 27, 34, 83islmhmd 20795 . 2 (𝜑𝐽 ∈ (𝑄 LMHom 𝐻))
85 eqid 2731 . . . 4 (Base‘𝐻) = (Base‘𝐻)
861, 85gimf1o 19178 . . 3 (𝐽 ∈ (𝑄 GrpIso 𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
8732, 86syl 17 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
881, 85islmim 20818 . 2 (𝐽 ∈ (𝑄 LMIso 𝐻) ↔ (𝐽 ∈ (𝑄 LMHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
8984, 87, 88sylanbrc 582 1 (𝜑𝐽 ∈ (𝑄 LMIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  wss 3948  𝒫 cpw 4602  {csn 4628   cuni 4908  cmpt 5231  ccnv 5675  ran crn 5677  cima 5679  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412   Er wer 8704  [cec 8705   / cqs 8706  Basecbs 17149  Scalarcsca 17205   ·𝑠 cvsca 17206  0gc0g 17390   /s cqus 17456  SubGrpcsubg 19037  NrmSGrpcnsg 19038   ~QG cqg 19039   GrpHom cghm 19128   GrpIso cgim 19172  LModclmod 20615  LSubSpclss 20687   LMHom clmhm 20775   LMIso clmim 20776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-ec 8709  df-qs 8713  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-0g 17392  df-imas 17459  df-qus 17460  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-subg 19040  df-nsg 19041  df-eqg 19042  df-ghm 19129  df-gim 19174  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-lmod 20617  df-lss 20688  df-lmhm 20778  df-lmim 20779
This theorem is referenced by:  lmicqusker  32810  algextdeglem4  33066
  Copyright terms: Public domain W3C validator