Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc3v Structured version   Visualization version   GIF version

Theorem meaiuninc3v 46513
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46510 and meaiuninc2 46511 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiuninc3v.m (𝜑𝑀 ∈ Meas)
meaiuninc3v.n (𝜑𝑁 ∈ ℤ)
meaiuninc3v.z 𝑍 = (ℤ𝑁)
meaiuninc3v.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninc3v.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninc3v.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiuninc3v (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiuninc3v
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc3v.n . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑁 ∈ ℤ)
3 meaiuninc3v.z . . 3 𝑍 = (ℤ𝑁)
4 meaiuninc3v.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
54adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
6 eqid 2735 . . . . . 6 dom 𝑀 = dom 𝑀
7 meaiuninc3v.e . . . . . . 7 (𝜑𝐸:𝑍⟶dom 𝑀)
87ffvelcdmda 7074 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
95, 6, 8meaxrcl 46490 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
10 meaiuninc3v.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
119, 10fmptd 7104 . . . 4 (𝜑𝑆:𝑍⟶ℝ*)
1211adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆:𝑍⟶ℝ*)
13 nfv 1914 . . . . 5 𝑛𝜑
14 nfcv 2898 . . . . . 6 𝑛
15 nfra1 3266 . . . . . 6 𝑛𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1614, 15nfrexw 3293 . . . . 5 𝑛𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1713, 16nfan 1899 . . . 4 𝑛(𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
18 nfcv 2898 . . . 4 𝑛𝐸
194adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑀 ∈ Meas)
207adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝐸:𝑍⟶dom 𝑀)
21 meaiuninc3v.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2221adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) ∧ 𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
23 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2417, 18, 19, 2, 3, 20, 22, 23, 10meaiunincf 46512 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
252, 3, 12, 24climxlim2 45875 . 2 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 2fveq3 6881 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (𝑀‘(𝐸𝑗)) = (𝑀‘(𝐸𝑛)))
2827breq2d 5131 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 < (𝑀‘(𝐸𝑗)) ↔ 𝑥 < (𝑀‘(𝐸𝑛))))
2928cbvrexvw 3221 . . . . . . . . . 10 (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)))
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛))))
31 rexr 11281 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → 𝑥 ∈ ℝ*)
339adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
3432, 33xrltnled 45390 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑥 < (𝑀‘(𝐸𝑛)) ↔ ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3534rexbidva 3162 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3630, 35bitrd 279 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3736ralbidva 3161 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
38 rexnal 3089 . . . . . . . . . 10 (∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
3938ralbii 3082 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
40 ralnex 3062 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4139, 40bitri 275 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4241a1i 11 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4337, 42bitrd 279 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4443adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4526, 44mpbird 257 . . . 4 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
46 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
4745, 46syldan 591 . . 3 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
48 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
4948, 31syl 17 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ*)
50 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝜑)
513uztrn2 12871 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5251ad4ant24 754 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5311ffvelcdmda 7074 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑆𝑛) ∈ ℝ*)
5450, 52, 53syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) ∈ ℝ*)
55 eleq1w 2817 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛𝑍𝑗𝑍))
5655anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑛𝑍) ↔ (𝜑𝑗𝑍)))
57 2fveq3 6881 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑗)))
5857eleq1d 2819 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝑀‘(𝐸𝑛)) ∈ ℝ* ↔ (𝑀‘(𝐸𝑗)) ∈ ℝ*))
5956, 58imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*) ↔ ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)))
6059, 9chvarvv 1998 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
6160ad5ant13 756 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
62 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑀‘(𝐸𝑗)))
6343ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑀 ∈ Meas)
647ffvelcdmda 7074 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑀)
65643adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ∈ dom 𝑀)
66 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝜑)
67513adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
6866, 67, 8syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑛) ∈ dom 𝑀)
69 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ (ℤ𝑗))
70 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝜑)
713uzssd3 45453 . . . . . . . . . . . . . . . . . . . . 21 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
7271adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → (ℤ𝑗) ⊆ 𝑍)
73 elfzouz 13680 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (𝑗..^𝑛) → 𝑘 ∈ (ℤ𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘 ∈ (ℤ𝑗))
7572, 74sseldd 3959 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
7675adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
77 eleq1w 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
7877anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
79 fveq2 6876 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
80 fvoveq1 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
8179, 80sseq12d 3992 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
8278, 81imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
8382, 21chvarvv 1998 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8470, 76, 83syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
85843adantl3 1169 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8669, 85ssinc 45111 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ⊆ (𝐸𝑛))
8763, 6, 65, 68, 86meassle 46492 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑀‘(𝐸𝑛)))
88 fvexd 6891 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑛)) ∈ V)
8910fvmpt2 6997 . . . . . . . . . . . . . . . 16 ((𝑛𝑍 ∧ (𝑀‘(𝐸𝑛)) ∈ V) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9051, 88, 89syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
91903adant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9287, 91breqtrrd 5147 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9392ad5ant135 1370 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9449, 61, 54, 62, 93xrltletrd 13177 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑆𝑛))
9549, 54, 94xrltled 13166 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ≤ (𝑆𝑛))
9695ralrimiva 3132 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
9796ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9897reximdva 3153 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9998ralimdva 3152 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
10099imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
101 nfmpt1 5220 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
10210, 101nfcxfr 2896 . . . . . . 7 𝑛𝑆
103102, 1, 3, 11xlimpnf 45871 . . . . . 6 (𝜑 → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
104103adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
105100, 104mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*+∞)
106 nfv 1914 . . . . . . 7 𝑥𝜑
107 nfra1 3266 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
108106, 107nfan 1899 . . . . . 6 𝑥(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
109 rspa 3231 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
110109adantll 714 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
111 nfv 1914 . . . . . . . . . 10 𝑗𝜑
112 nfcv 2898 . . . . . . . . . . 11 𝑗
113 nfre1 3267 . . . . . . . . . . 11 𝑗𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
114112, 113nfralw 3291 . . . . . . . . . 10 𝑗𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
115111, 114nfan 1899 . . . . . . . . 9 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
116 nfv 1914 . . . . . . . . 9 𝑗 𝑥 ∈ ℝ
117115, 116nfan 1899 . . . . . . . 8 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ)
118 nfv 1914 . . . . . . . 8 𝑗 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))
11931ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ∈ ℝ*)
1204, 6dmmeasal 46481 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1213uzct 45087 . . . . . . . . . . . . . . 15 𝑍 ≼ ω
122121a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ≼ ω)
123120, 122, 8saliuncl 46352 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
1244, 6, 123meaxrcl 46490 . . . . . . . . . . . 12 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
125124ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
12660ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
127 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀‘(𝐸𝑗)))
1284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑀 ∈ Meas)
129123adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
130 fveq2 6876 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
131130ssiun2s 5024 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
132131adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
133128, 6, 64, 129, 132meassle 46492 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
134133ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
135119, 126, 125, 127, 134xrltletrd 13177 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀 𝑛𝑍 (𝐸𝑛)))
136119, 125, 135xrltled 13166 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
137136exp31 419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
138137adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
139117, 118, 138rexlimd 3249 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
140110, 139mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
141108, 140ralrimia 3241 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
142 xrpnf 45512 . . . . . . 7 ((𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ* → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
143124, 142syl 17 . . . . . 6 (𝜑 → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
144143adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
145141, 144mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) = +∞)
146105, 145breqtrrd 5147 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14747, 146syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14825, 147pm2.61dan 812 1 (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   ciun 4967   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  ωcom 7861  cdom 8957  cr 11128  1c1 11130   + caddc 11132  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  ..^cfzo 13671  ~~>*clsxlim 45847  Meascmea 46478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-ordt 17515  df-ps 18576  df-tsr 18577  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-lm 23167  df-xms 24259  df-ms 24260  df-xlim 45848  df-salg 46338  df-sumge0 46392  df-mea 46479
This theorem is referenced by:  meaiuninc3  46514
  Copyright terms: Public domain W3C validator