Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc3v Structured version   Visualization version   GIF version

Theorem meaiuninc3v 46475
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46472 and meaiuninc2 46473 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiuninc3v.m (𝜑𝑀 ∈ Meas)
meaiuninc3v.n (𝜑𝑁 ∈ ℤ)
meaiuninc3v.z 𝑍 = (ℤ𝑁)
meaiuninc3v.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninc3v.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninc3v.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiuninc3v (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiuninc3v
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc3v.n . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑁 ∈ ℤ)
3 meaiuninc3v.z . . 3 𝑍 = (ℤ𝑁)
4 meaiuninc3v.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
54adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
6 eqid 2729 . . . . . 6 dom 𝑀 = dom 𝑀
7 meaiuninc3v.e . . . . . . 7 (𝜑𝐸:𝑍⟶dom 𝑀)
87ffvelcdmda 7038 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
95, 6, 8meaxrcl 46452 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
10 meaiuninc3v.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
119, 10fmptd 7068 . . . 4 (𝜑𝑆:𝑍⟶ℝ*)
1211adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆:𝑍⟶ℝ*)
13 nfv 1914 . . . . 5 𝑛𝜑
14 nfcv 2891 . . . . . 6 𝑛
15 nfra1 3259 . . . . . 6 𝑛𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1614, 15nfrexw 3284 . . . . 5 𝑛𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1713, 16nfan 1899 . . . 4 𝑛(𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
18 nfcv 2891 . . . 4 𝑛𝐸
194adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑀 ∈ Meas)
207adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝐸:𝑍⟶dom 𝑀)
21 meaiuninc3v.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2221adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) ∧ 𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
23 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2417, 18, 19, 2, 3, 20, 22, 23, 10meaiunincf 46474 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
252, 3, 12, 24climxlim2 45837 . 2 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 2fveq3 6845 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (𝑀‘(𝐸𝑗)) = (𝑀‘(𝐸𝑛)))
2827breq2d 5114 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 < (𝑀‘(𝐸𝑗)) ↔ 𝑥 < (𝑀‘(𝐸𝑛))))
2928cbvrexvw 3214 . . . . . . . . . 10 (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)))
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛))))
31 rexr 11196 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → 𝑥 ∈ ℝ*)
339adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
3432, 33xrltnled 45352 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑥 < (𝑀‘(𝐸𝑛)) ↔ ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3534rexbidva 3155 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3630, 35bitrd 279 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3736ralbidva 3154 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
38 rexnal 3082 . . . . . . . . . 10 (∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
3938ralbii 3075 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
40 ralnex 3055 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4139, 40bitri 275 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4241a1i 11 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4337, 42bitrd 279 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4443adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4526, 44mpbird 257 . . . 4 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
46 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
4745, 46syldan 591 . . 3 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
48 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
4948, 31syl 17 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ*)
50 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝜑)
513uztrn2 12788 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5251ad4ant24 754 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5311ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑆𝑛) ∈ ℝ*)
5450, 52, 53syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) ∈ ℝ*)
55 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛𝑍𝑗𝑍))
5655anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑛𝑍) ↔ (𝜑𝑗𝑍)))
57 2fveq3 6845 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑗)))
5857eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝑀‘(𝐸𝑛)) ∈ ℝ* ↔ (𝑀‘(𝐸𝑗)) ∈ ℝ*))
5956, 58imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*) ↔ ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)))
6059, 9chvarvv 1989 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
6160ad5ant13 756 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
62 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑀‘(𝐸𝑗)))
6343ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑀 ∈ Meas)
647ffvelcdmda 7038 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑀)
65643adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ∈ dom 𝑀)
66 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝜑)
67513adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
6866, 67, 8syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑛) ∈ dom 𝑀)
69 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ (ℤ𝑗))
70 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝜑)
713uzssd3 45415 . . . . . . . . . . . . . . . . . . . . 21 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
7271adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → (ℤ𝑗) ⊆ 𝑍)
73 elfzouz 13600 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (𝑗..^𝑛) → 𝑘 ∈ (ℤ𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘 ∈ (ℤ𝑗))
7572, 74sseldd 3944 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
7675adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
77 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
7877anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
79 fveq2 6840 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
80 fvoveq1 7392 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
8179, 80sseq12d 3977 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
8278, 81imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
8382, 21chvarvv 1989 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8470, 76, 83syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
85843adantl3 1169 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8669, 85ssinc 45074 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ⊆ (𝐸𝑛))
8763, 6, 65, 68, 86meassle 46454 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑀‘(𝐸𝑛)))
88 fvexd 6855 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑛)) ∈ V)
8910fvmpt2 6961 . . . . . . . . . . . . . . . 16 ((𝑛𝑍 ∧ (𝑀‘(𝐸𝑛)) ∈ V) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9051, 88, 89syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
91903adant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9287, 91breqtrrd 5130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9392ad5ant135 1370 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9449, 61, 54, 62, 93xrltletrd 13097 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑆𝑛))
9549, 54, 94xrltled 13086 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ≤ (𝑆𝑛))
9695ralrimiva 3125 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
9796ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9897reximdva 3146 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9998ralimdva 3145 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
10099imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
101 nfmpt1 5201 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
10210, 101nfcxfr 2889 . . . . . . 7 𝑛𝑆
103102, 1, 3, 11xlimpnf 45833 . . . . . 6 (𝜑 → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
104103adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
105100, 104mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*+∞)
106 nfv 1914 . . . . . . 7 𝑥𝜑
107 nfra1 3259 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
108106, 107nfan 1899 . . . . . 6 𝑥(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
109 rspa 3224 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
110109adantll 714 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
111 nfv 1914 . . . . . . . . . 10 𝑗𝜑
112 nfcv 2891 . . . . . . . . . . 11 𝑗
113 nfre1 3260 . . . . . . . . . . 11 𝑗𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
114112, 113nfralw 3283 . . . . . . . . . 10 𝑗𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
115111, 114nfan 1899 . . . . . . . . 9 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
116 nfv 1914 . . . . . . . . 9 𝑗 𝑥 ∈ ℝ
117115, 116nfan 1899 . . . . . . . 8 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ)
118 nfv 1914 . . . . . . . 8 𝑗 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))
11931ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ∈ ℝ*)
1204, 6dmmeasal 46443 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1213uzct 45050 . . . . . . . . . . . . . . 15 𝑍 ≼ ω
122121a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ≼ ω)
123120, 122, 8saliuncl 46314 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
1244, 6, 123meaxrcl 46452 . . . . . . . . . . . 12 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
125124ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
12660ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
127 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀‘(𝐸𝑗)))
1284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑀 ∈ Meas)
129123adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
130 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
131130ssiun2s 5007 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
132131adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
133128, 6, 64, 129, 132meassle 46454 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
134133ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
135119, 126, 125, 127, 134xrltletrd 13097 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀 𝑛𝑍 (𝐸𝑛)))
136119, 125, 135xrltled 13086 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
137136exp31 419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
138137adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
139117, 118, 138rexlimd 3242 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
140110, 139mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
141108, 140ralrimia 3234 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
142 xrpnf 45474 . . . . . . 7 ((𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ* → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
143124, 142syl 17 . . . . . 6 (𝜑 → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
144143adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
145141, 144mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) = +∞)
146105, 145breqtrrd 5130 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14747, 146syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14825, 147pm2.61dan 812 1 (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911   ciun 4951   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  cr 11043  1c1 11045   + caddc 11047  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  cz 12505  cuz 12769  ..^cfzo 13591  ~~>*clsxlim 45809  Meascmea 46440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-ordt 17440  df-ps 18507  df-tsr 18508  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-lm 23149  df-xms 24241  df-ms 24242  df-xlim 45810  df-salg 46300  df-sumge0 46354  df-mea 46441
This theorem is referenced by:  meaiuninc3  46476
  Copyright terms: Public domain W3C validator