Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc3v Structured version   Visualization version   GIF version

Theorem meaiuninc3v 46440
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46437 and meaiuninc2 46438 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiuninc3v.m (𝜑𝑀 ∈ Meas)
meaiuninc3v.n (𝜑𝑁 ∈ ℤ)
meaiuninc3v.z 𝑍 = (ℤ𝑁)
meaiuninc3v.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninc3v.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninc3v.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiuninc3v (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiuninc3v
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc3v.n . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑁 ∈ ℤ)
3 meaiuninc3v.z . . 3 𝑍 = (ℤ𝑁)
4 meaiuninc3v.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
54adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
6 eqid 2735 . . . . . 6 dom 𝑀 = dom 𝑀
7 meaiuninc3v.e . . . . . . 7 (𝜑𝐸:𝑍⟶dom 𝑀)
87ffvelcdmda 7104 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
95, 6, 8meaxrcl 46417 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
10 meaiuninc3v.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
119, 10fmptd 7134 . . . 4 (𝜑𝑆:𝑍⟶ℝ*)
1211adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆:𝑍⟶ℝ*)
13 nfv 1912 . . . . 5 𝑛𝜑
14 nfcv 2903 . . . . . 6 𝑛
15 nfra1 3282 . . . . . 6 𝑛𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1614, 15nfrexw 3311 . . . . 5 𝑛𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1713, 16nfan 1897 . . . 4 𝑛(𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
18 nfcv 2903 . . . 4 𝑛𝐸
194adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑀 ∈ Meas)
207adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝐸:𝑍⟶dom 𝑀)
21 meaiuninc3v.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2221adantlr 715 . . . 4 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) ∧ 𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
23 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2417, 18, 19, 2, 3, 20, 22, 23, 10meaiunincf 46439 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
252, 3, 12, 24climxlim2 45802 . 2 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 2fveq3 6912 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (𝑀‘(𝐸𝑗)) = (𝑀‘(𝐸𝑛)))
2827breq2d 5160 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 < (𝑀‘(𝐸𝑗)) ↔ 𝑥 < (𝑀‘(𝐸𝑛))))
2928cbvrexvw 3236 . . . . . . . . . 10 (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)))
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛))))
31 rexr 11305 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → 𝑥 ∈ ℝ*)
339adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
3432, 33xrltnled 45313 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑥 < (𝑀‘(𝐸𝑛)) ↔ ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3534rexbidva 3175 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3630, 35bitrd 279 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3736ralbidva 3174 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
38 rexnal 3098 . . . . . . . . . 10 (∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
3938ralbii 3091 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
40 ralnex 3070 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4139, 40bitri 275 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4241a1i 11 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4337, 42bitrd 279 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4443adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4526, 44mpbird 257 . . . 4 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
46 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
4745, 46syldan 591 . . 3 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
48 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
4948, 31syl 17 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ*)
50 simp-4l 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝜑)
513uztrn2 12895 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5251ad4ant24 754 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5311ffvelcdmda 7104 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑆𝑛) ∈ ℝ*)
5450, 52, 53syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) ∈ ℝ*)
55 eleq1w 2822 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛𝑍𝑗𝑍))
5655anbi2d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑛𝑍) ↔ (𝜑𝑗𝑍)))
57 2fveq3 6912 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑗)))
5857eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝑀‘(𝐸𝑛)) ∈ ℝ* ↔ (𝑀‘(𝐸𝑗)) ∈ ℝ*))
5956, 58imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*) ↔ ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)))
6059, 9chvarvv 1996 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
6160ad5ant13 757 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
62 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑀‘(𝐸𝑗)))
6343ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑀 ∈ Meas)
647ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑀)
65643adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ∈ dom 𝑀)
66 simp1 1135 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝜑)
67513adant1 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
6866, 67, 8syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑛) ∈ dom 𝑀)
69 simp3 1137 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ (ℤ𝑗))
70 simpll 767 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝜑)
713uzssd3 45376 . . . . . . . . . . . . . . . . . . . . 21 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
7271adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → (ℤ𝑗) ⊆ 𝑍)
73 elfzouz 13700 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (𝑗..^𝑛) → 𝑘 ∈ (ℤ𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘 ∈ (ℤ𝑗))
7572, 74sseldd 3996 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
7675adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
77 eleq1w 2822 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
7877anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
79 fveq2 6907 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
80 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
8179, 80sseq12d 4029 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
8278, 81imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
8382, 21chvarvv 1996 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8470, 76, 83syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
85843adantl3 1167 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8669, 85ssinc 45027 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ⊆ (𝐸𝑛))
8763, 6, 65, 68, 86meassle 46419 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑀‘(𝐸𝑛)))
88 fvexd 6922 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑛)) ∈ V)
8910fvmpt2 7027 . . . . . . . . . . . . . . . 16 ((𝑛𝑍 ∧ (𝑀‘(𝐸𝑛)) ∈ V) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9051, 88, 89syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
91903adant1 1129 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9287, 91breqtrrd 5176 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9392ad5ant135 1367 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9449, 61, 54, 62, 93xrltletrd 13200 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑆𝑛))
9549, 54, 94xrltled 13189 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ≤ (𝑆𝑛))
9695ralrimiva 3144 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
9796ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9897reximdva 3166 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9998ralimdva 3165 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
10099imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
101 nfmpt1 5256 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
10210, 101nfcxfr 2901 . . . . . . 7 𝑛𝑆
103102, 1, 3, 11xlimpnf 45798 . . . . . 6 (𝜑 → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
104103adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
105100, 104mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*+∞)
106 nfv 1912 . . . . . . 7 𝑥𝜑
107 nfra1 3282 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
108106, 107nfan 1897 . . . . . 6 𝑥(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
109 rspa 3246 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
110109adantll 714 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
111 nfv 1912 . . . . . . . . . 10 𝑗𝜑
112 nfcv 2903 . . . . . . . . . . 11 𝑗
113 nfre1 3283 . . . . . . . . . . 11 𝑗𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
114112, 113nfralw 3309 . . . . . . . . . 10 𝑗𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
115111, 114nfan 1897 . . . . . . . . 9 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
116 nfv 1912 . . . . . . . . 9 𝑗 𝑥 ∈ ℝ
117115, 116nfan 1897 . . . . . . . 8 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ)
118 nfv 1912 . . . . . . . 8 𝑗 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))
11931ad3antlr 731 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ∈ ℝ*)
1204, 6dmmeasal 46408 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1213uzct 45003 . . . . . . . . . . . . . . 15 𝑍 ≼ ω
122121a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ≼ ω)
123120, 122, 8saliuncl 46279 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
1244, 6, 123meaxrcl 46417 . . . . . . . . . . . 12 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
125124ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
12660ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
127 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀‘(𝐸𝑗)))
1284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑀 ∈ Meas)
129123adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
130 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
131130ssiun2s 5053 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
132131adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
133128, 6, 64, 129, 132meassle 46419 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
134133ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
135119, 126, 125, 127, 134xrltletrd 13200 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀 𝑛𝑍 (𝐸𝑛)))
136119, 125, 135xrltled 13189 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
137136exp31 419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
138137adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
139117, 118, 138rexlimd 3264 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
140110, 139mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
141108, 140ralrimia 3256 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
142 xrpnf 45436 . . . . . . 7 ((𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ* → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
143124, 142syl 17 . . . . . 6 (𝜑 → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
144143adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
145141, 144mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) = +∞)
146105, 145breqtrrd 5176 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14747, 146syldan 591 . 2 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14825, 147pm2.61dan 813 1 (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   ciun 4996   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  cr 11152  1c1 11154   + caddc 11156  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  ..^cfzo 13691  ~~>*clsxlim 45774  Meascmea 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-lm 23253  df-xms 24346  df-ms 24347  df-xlim 45775  df-salg 46265  df-sumge0 46319  df-mea 46406
This theorem is referenced by:  meaiuninc3  46441
  Copyright terms: Public domain W3C validator