Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc3v Structured version   Visualization version   GIF version

Theorem meaiuninc3v 46405
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46402 and meaiuninc2 46403 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiuninc3v.m (𝜑𝑀 ∈ Meas)
meaiuninc3v.n (𝜑𝑁 ∈ ℤ)
meaiuninc3v.z 𝑍 = (ℤ𝑁)
meaiuninc3v.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninc3v.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninc3v.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiuninc3v (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiuninc3v
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc3v.n . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑁 ∈ ℤ)
3 meaiuninc3v.z . . 3 𝑍 = (ℤ𝑁)
4 meaiuninc3v.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
54adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
6 eqid 2740 . . . . . 6 dom 𝑀 = dom 𝑀
7 meaiuninc3v.e . . . . . . 7 (𝜑𝐸:𝑍⟶dom 𝑀)
87ffvelcdmda 7118 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
95, 6, 8meaxrcl 46382 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
10 meaiuninc3v.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
119, 10fmptd 7148 . . . 4 (𝜑𝑆:𝑍⟶ℝ*)
1211adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆:𝑍⟶ℝ*)
13 nfv 1913 . . . . 5 𝑛𝜑
14 nfcv 2908 . . . . . 6 𝑛
15 nfra1 3290 . . . . . 6 𝑛𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1614, 15nfrexw 3319 . . . . 5 𝑛𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1713, 16nfan 1898 . . . 4 𝑛(𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
18 nfcv 2908 . . . 4 𝑛𝐸
194adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑀 ∈ Meas)
207adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝐸:𝑍⟶dom 𝑀)
21 meaiuninc3v.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2221adantlr 714 . . . 4 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) ∧ 𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
23 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2417, 18, 19, 2, 3, 20, 22, 23, 10meaiunincf 46404 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
252, 3, 12, 24climxlim2 45767 . 2 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 2fveq3 6925 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (𝑀‘(𝐸𝑗)) = (𝑀‘(𝐸𝑛)))
2827breq2d 5178 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 < (𝑀‘(𝐸𝑗)) ↔ 𝑥 < (𝑀‘(𝐸𝑛))))
2928cbvrexvw 3244 . . . . . . . . . 10 (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)))
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛))))
31 rexr 11336 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → 𝑥 ∈ ℝ*)
339adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
3432, 33xrltnled 45278 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑥 < (𝑀‘(𝐸𝑛)) ↔ ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3534rexbidva 3183 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3630, 35bitrd 279 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3736ralbidva 3182 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
38 rexnal 3106 . . . . . . . . . 10 (∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
3938ralbii 3099 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
40 ralnex 3078 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4139, 40bitri 275 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4241a1i 11 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4337, 42bitrd 279 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4443adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4526, 44mpbird 257 . . . 4 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
46 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
4745, 46syldan 590 . . 3 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
48 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
4948, 31syl 17 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ*)
50 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝜑)
513uztrn2 12922 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5251ad4ant24 753 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5311ffvelcdmda 7118 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑆𝑛) ∈ ℝ*)
5450, 52, 53syl2anc 583 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) ∈ ℝ*)
55 eleq1w 2827 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛𝑍𝑗𝑍))
5655anbi2d 629 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑛𝑍) ↔ (𝜑𝑗𝑍)))
57 2fveq3 6925 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑗)))
5857eleq1d 2829 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝑀‘(𝐸𝑛)) ∈ ℝ* ↔ (𝑀‘(𝐸𝑗)) ∈ ℝ*))
5956, 58imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*) ↔ ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)))
6059, 9chvarvv 1998 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
6160ad5ant13 756 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
62 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑀‘(𝐸𝑗)))
6343ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑀 ∈ Meas)
647ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑀)
65643adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ∈ dom 𝑀)
66 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝜑)
67513adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
6866, 67, 8syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑛) ∈ dom 𝑀)
69 simp3 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ (ℤ𝑗))
70 simpll 766 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝜑)
713uzssd3 45341 . . . . . . . . . . . . . . . . . . . . 21 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
7271adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → (ℤ𝑗) ⊆ 𝑍)
73 elfzouz 13720 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (𝑗..^𝑛) → 𝑘 ∈ (ℤ𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘 ∈ (ℤ𝑗))
7572, 74sseldd 4009 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
7675adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
77 eleq1w 2827 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
7877anbi2d 629 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
79 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
80 fvoveq1 7471 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
8179, 80sseq12d 4042 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
8278, 81imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
8382, 21chvarvv 1998 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8470, 76, 83syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
85843adantl3 1168 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8669, 85ssinc 44989 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ⊆ (𝐸𝑛))
8763, 6, 65, 68, 86meassle 46384 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑀‘(𝐸𝑛)))
88 fvexd 6935 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑛)) ∈ V)
8910fvmpt2 7040 . . . . . . . . . . . . . . . 16 ((𝑛𝑍 ∧ (𝑀‘(𝐸𝑛)) ∈ V) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9051, 88, 89syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
91903adant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9287, 91breqtrrd 5194 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9392ad5ant135 1368 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9449, 61, 54, 62, 93xrltletrd 13223 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑆𝑛))
9549, 54, 94xrltled 13212 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ≤ (𝑆𝑛))
9695ralrimiva 3152 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
9796ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9897reximdva 3174 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9998ralimdva 3173 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
10099imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
101 nfmpt1 5274 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
10210, 101nfcxfr 2906 . . . . . . 7 𝑛𝑆
103102, 1, 3, 11xlimpnf 45763 . . . . . 6 (𝜑 → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
104103adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
105100, 104mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*+∞)
106 nfv 1913 . . . . . . 7 𝑥𝜑
107 nfra1 3290 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
108106, 107nfan 1898 . . . . . 6 𝑥(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
109 rspa 3254 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
110109adantll 713 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
111 nfv 1913 . . . . . . . . . 10 𝑗𝜑
112 nfcv 2908 . . . . . . . . . . 11 𝑗
113 nfre1 3291 . . . . . . . . . . 11 𝑗𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
114112, 113nfralw 3317 . . . . . . . . . 10 𝑗𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
115111, 114nfan 1898 . . . . . . . . 9 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
116 nfv 1913 . . . . . . . . 9 𝑗 𝑥 ∈ ℝ
117115, 116nfan 1898 . . . . . . . 8 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ)
118 nfv 1913 . . . . . . . 8 𝑗 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))
11931ad3antlr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ∈ ℝ*)
1204, 6dmmeasal 46373 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1213uzct 44965 . . . . . . . . . . . . . . 15 𝑍 ≼ ω
122121a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ≼ ω)
123120, 122, 8saliuncl 46244 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
1244, 6, 123meaxrcl 46382 . . . . . . . . . . . 12 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
125124ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
12660ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
127 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀‘(𝐸𝑗)))
1284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑀 ∈ Meas)
129123adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
130 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
131130ssiun2s 5071 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
132131adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
133128, 6, 64, 129, 132meassle 46384 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
134133ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
135119, 126, 125, 127, 134xrltletrd 13223 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀 𝑛𝑍 (𝐸𝑛)))
136119, 125, 135xrltled 13212 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
137136exp31 419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
138137adantlr 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
139117, 118, 138rexlimd 3272 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
140110, 139mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
141108, 140ralrimia 3264 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
142 xrpnf 45401 . . . . . . 7 ((𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ* → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
143124, 142syl 17 . . . . . 6 (𝜑 → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
144143adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
145141, 144mpbird 257 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) = +∞)
146105, 145breqtrrd 5194 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14747, 146syldan 590 . 2 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14825, 147pm2.61dan 812 1 (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   ciun 5015   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  cdom 9001  cr 11183  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  ..^cfzo 13711  ~~>*clsxlim 45739  Meascmea 46370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-ordt 17561  df-ps 18636  df-tsr 18637  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-lm 23258  df-xms 24351  df-ms 24352  df-xlim 45740  df-salg 46230  df-sumge0 46284  df-mea 46371
This theorem is referenced by:  meaiuninc3  46406
  Copyright terms: Public domain W3C validator