Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiuninc3v Structured version   Visualization version   GIF version

Theorem meaiuninc3v 43912
Description: Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 43909 and meaiuninc2 43910 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
meaiuninc3v.m (𝜑𝑀 ∈ Meas)
meaiuninc3v.n (𝜑𝑁 ∈ ℤ)
meaiuninc3v.z 𝑍 = (ℤ𝑁)
meaiuninc3v.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiuninc3v.i ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
meaiuninc3v.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiuninc3v (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝑀   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑁(𝑛)

Proof of Theorem meaiuninc3v
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meaiuninc3v.n . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑁 ∈ ℤ)
3 meaiuninc3v.z . . 3 𝑍 = (ℤ𝑁)
4 meaiuninc3v.m . . . . . . 7 (𝜑𝑀 ∈ Meas)
54adantr 480 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ Meas)
6 eqid 2738 . . . . . 6 dom 𝑀 = dom 𝑀
7 meaiuninc3v.e . . . . . . 7 (𝜑𝐸:𝑍⟶dom 𝑀)
87ffvelrnda 6943 . . . . . 6 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ dom 𝑀)
95, 6, 8meaxrcl 43889 . . . . 5 ((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
10 meaiuninc3v.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
119, 10fmptd 6970 . . . 4 (𝜑𝑆:𝑍⟶ℝ*)
1211adantr 480 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆:𝑍⟶ℝ*)
13 nfv 1918 . . . . 5 𝑛𝜑
14 nfcv 2906 . . . . . 6 𝑛
15 nfra1 3142 . . . . . 6 𝑛𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1614, 15nfrex 3237 . . . . 5 𝑛𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥
1713, 16nfan 1903 . . . 4 𝑛(𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
18 nfcv 2906 . . . 4 𝑛𝐸
194adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑀 ∈ Meas)
207adantr 480 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝐸:𝑍⟶dom 𝑀)
21 meaiuninc3v.i . . . . 5 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
2221adantlr 711 . . . 4 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) ∧ 𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)))
23 simpr 484 . . . 4 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
2417, 18, 19, 2, 3, 20, 22, 23, 10meaiunincf 43911 . . 3 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
252, 3, 12, 24climxlim2 43277 . 2 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
27 2fveq3 6761 . . . . . . . . . . . 12 (𝑗 = 𝑛 → (𝑀‘(𝐸𝑗)) = (𝑀‘(𝐸𝑛)))
2827breq2d 5082 . . . . . . . . . . 11 (𝑗 = 𝑛 → (𝑥 < (𝑀‘(𝐸𝑗)) ↔ 𝑥 < (𝑀‘(𝐸𝑛))))
2928cbvrexvw 3373 . . . . . . . . . 10 (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)))
3029a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛))))
31 rexr 10952 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3231ad2antlr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → 𝑥 ∈ ℝ*)
339adantlr 711 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*)
3432, 33xrltnled 42792 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑛𝑍) → (𝑥 < (𝑀‘(𝐸𝑛)) ↔ ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3534rexbidva 3224 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑛𝑍 𝑥 < (𝑀‘(𝐸𝑛)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3630, 35bitrd 278 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
3736ralbidva 3119 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥))
38 rexnal 3165 . . . . . . . . . 10 (∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
3938ralbii 3090 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
40 ralnex 3163 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4139, 40bitri 274 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥)
4241a1i 11 . . . . . . 7 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑛𝑍 ¬ (𝑀‘(𝐸𝑛)) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4337, 42bitrd 278 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4443adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥))
4526, 44mpbird 256 . . . 4 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
46 simpr 484 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
4745, 46syldan 590 . . 3 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
48 simp-4r 780 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
4948, 31syl 17 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ*)
50 simp-4l 779 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝜑)
513uztrn2 12530 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5251ad4ant24 750 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5311ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝑆𝑛) ∈ ℝ*)
5450, 52, 53syl2anc 583 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) ∈ ℝ*)
55 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛𝑍𝑗𝑍))
5655anbi2d 628 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝜑𝑛𝑍) ↔ (𝜑𝑗𝑍)))
57 2fveq3 6761 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑀‘(𝐸𝑛)) = (𝑀‘(𝐸𝑗)))
5857eleq1d 2823 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗 → ((𝑀‘(𝐸𝑛)) ∈ ℝ* ↔ (𝑀‘(𝐸𝑗)) ∈ ℝ*))
5956, 58imbi12d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑗 → (((𝜑𝑛𝑍) → (𝑀‘(𝐸𝑛)) ∈ ℝ*) ↔ ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)))
6059, 9chvarvv 2003 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
6160ad5ant13 753 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
62 simplr 765 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑀‘(𝐸𝑗)))
6343ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑀 ∈ Meas)
647ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝐸𝑗) ∈ dom 𝑀)
65643adant3 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ∈ dom 𝑀)
66 simp1 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝜑)
67513adant1 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
6866, 67, 8syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑛) ∈ dom 𝑀)
69 simp3 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ (ℤ𝑗))
70 simpll 763 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝜑)
713uzssd3 42856 . . . . . . . . . . . . . . . . . . . . 21 (𝑗𝑍 → (ℤ𝑗) ⊆ 𝑍)
7271adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → (ℤ𝑗) ⊆ 𝑍)
73 elfzouz 13320 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (𝑗..^𝑛) → 𝑘 ∈ (ℤ𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘 ∈ (ℤ𝑗))
7572, 74sseldd 3918 . . . . . . . . . . . . . . . . . . 19 ((𝑗𝑍𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
7675adantll 710 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → 𝑘𝑍)
77 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝑛𝑍𝑘𝑍))
7877anbi2d 628 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝜑𝑛𝑍) ↔ (𝜑𝑘𝑍)))
79 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸𝑛) = (𝐸𝑘))
80 fvoveq1 7278 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (𝐸‘(𝑛 + 1)) = (𝐸‘(𝑘 + 1)))
8179, 80sseq12d 3950 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → ((𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1)) ↔ (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1))))
8278, 81imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ (𝐸‘(𝑛 + 1))) ↔ ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))))
8382, 21chvarvv 2003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8470, 76, 83syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
85843adantl3 1166 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) ∧ 𝑘 ∈ (𝑗..^𝑛)) → (𝐸𝑘) ⊆ (𝐸‘(𝑘 + 1)))
8669, 85ssinc 42526 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝐸𝑗) ⊆ (𝐸𝑛))
8763, 6, 65, 68, 86meassle 43891 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑀‘(𝐸𝑛)))
88 fvexd 6771 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑛)) ∈ V)
8910fvmpt2 6868 . . . . . . . . . . . . . . . 16 ((𝑛𝑍 ∧ (𝑀‘(𝐸𝑛)) ∈ V) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9051, 88, 89syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
91903adant1 1128 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑆𝑛) = (𝑀‘(𝐸𝑛)))
9287, 91breqtrrd 5098 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9392ad5ant135 1366 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝑀‘(𝐸𝑗)) ≤ (𝑆𝑛))
9449, 61, 54, 62, 93xrltletrd 12824 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 < (𝑆𝑛))
9549, 54, 94xrltled 12813 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑥 ≤ (𝑆𝑛))
9695ralrimiva 3107 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
9796ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9897reximdva 3202 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
9998ralimdva 3102 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
10099imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛))
101 nfmpt1 5178 . . . . . . . 8 𝑛(𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
10210, 101nfcxfr 2904 . . . . . . 7 𝑛𝑆
103102, 1, 3, 11xlimpnf 43273 . . . . . 6 (𝜑 → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
104103adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑆~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)𝑥 ≤ (𝑆𝑛)))
105100, 104mpbird 256 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*+∞)
106 nfv 1918 . . . . . . 7 𝑥𝜑
107 nfra1 3142 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
108106, 107nfan 1903 . . . . . 6 𝑥(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
109 rspa 3130 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
110109adantll 710 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
111 nfv 1918 . . . . . . . . . 10 𝑗𝜑
112 nfcv 2906 . . . . . . . . . . 11 𝑗
113 nfre1 3234 . . . . . . . . . . 11 𝑗𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
114112, 113nfralw 3149 . . . . . . . . . 10 𝑗𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))
115111, 114nfan 1903 . . . . . . . . 9 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)))
116 nfv 1918 . . . . . . . . 9 𝑗 𝑥 ∈ ℝ
117115, 116nfan 1903 . . . . . . . 8 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ)
118 nfv 1918 . . . . . . . 8 𝑗 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))
11931ad3antlr 727 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ∈ ℝ*)
1204, 6dmmeasal 43880 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑀 ∈ SAlg)
1213uzct 42500 . . . . . . . . . . . . . . 15 𝑍 ≼ ω
122121a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ≼ ω)
123120, 122, 8saliuncl 43753 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
1244, 6, 123meaxrcl 43889 . . . . . . . . . . . 12 (𝜑 → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
125124ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
12660ad4ant13 747 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ∈ ℝ*)
127 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀‘(𝐸𝑗)))
1284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑀 ∈ Meas)
129123adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑛𝑍 (𝐸𝑛) ∈ dom 𝑀)
130 fveq2 6756 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝐸𝑛) = (𝐸𝑗))
131130ssiun2s 4974 . . . . . . . . . . . . . . 15 (𝑗𝑍 → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
132131adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → (𝐸𝑗) ⊆ 𝑛𝑍 (𝐸𝑛))
133128, 6, 64, 129, 132meassle 43891 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
134133ad4ant13 747 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀‘(𝐸𝑗)) ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
135119, 126, 125, 127, 134xrltletrd 12824 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 < (𝑀 𝑛𝑍 (𝐸𝑛)))
136119, 125, 135xrltled 12813 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
137136exp31 419 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
138137adantlr 711 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (𝑗𝑍 → (𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))))
139117, 118, 138rexlimd 3245 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → (∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗)) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
140110, 139mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
141108, 140ralrimia 3420 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛)))
142 xrpnf 42916 . . . . . . 7 ((𝑀 𝑛𝑍 (𝐸𝑛)) ∈ ℝ* → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
143124, 142syl 17 . . . . . 6 (𝜑 → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
144143adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → ((𝑀 𝑛𝑍 (𝐸𝑛)) = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥 ≤ (𝑀 𝑛𝑍 (𝐸𝑛))))
145141, 144mpbird 256 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → (𝑀 𝑛𝑍 (𝐸𝑛)) = +∞)
146105, 145breqtrrd 5098 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍 𝑥 < (𝑀‘(𝐸𝑗))) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14747, 146syldan 590 . 2 ((𝜑 ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑛𝑍 (𝑀‘(𝐸𝑛)) ≤ 𝑥) → 𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
14825, 147pm2.61dan 809 1 (𝜑𝑆~~>*(𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   ciun 4921   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  cr 10801  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cz 12249  cuz 12511  ..^cfzo 13311  ~~>*clsxlim 43249  Meascmea 43877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-lm 22288  df-xms 23381  df-ms 23382  df-xlim 43250  df-salg 43740  df-sumge0 43791  df-mea 43878
This theorem is referenced by:  meaiuninc3  43913
  Copyright terms: Public domain W3C validator