| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopeq1 | Structured version Visualization version GIF version | ||
| Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| Ref | Expression |
|---|---|
| altopeq1 | ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ 𝐶 = 𝐶 | |
| 2 | altopeq12 35926 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⟪caltop 35920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-altop 35922 |
| This theorem is referenced by: sbcaltop 35945 |
| Copyright terms: Public domain | W3C validator |