![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopeq1 | Structured version Visualization version GIF version |
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopeq1 | ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | altopeq12 35918 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐶) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⟪caltop 35912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-altop 35914 |
This theorem is referenced by: sbcaltop 35937 |
Copyright terms: Public domain | W3C validator |