Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopeq1 Structured version   Visualization version   GIF version

Theorem altopeq1 34594
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopeq1 (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫)

Proof of Theorem altopeq1
StepHypRef Expression
1 eqid 2733 . 2 𝐶 = 𝐶
2 altopeq12 34593 . 2 ((𝐴 = 𝐵𝐶 = 𝐶) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫)
31, 2mpan2 690 1 (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  caltop 34587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-sn 4588  df-pr 4590  df-altop 34589
This theorem is referenced by:  sbcaltop  34612
  Copyright terms: Public domain W3C validator