Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopeq12 Structured version   Visualization version   GIF version

Theorem altopeq12 32608
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫)

Proof of Theorem altopeq12
StepHypRef Expression
1 sneq 4407 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
2 sneq 4407 . . 3 (𝐶 = 𝐷 → {𝐶} = {𝐷})
31, 2anim12i 608 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷}))
4 altopthsn 32607 . 2 (⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫ ↔ ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷}))
53, 4sylibr 226 1 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  {csn 4397  caltop 32602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-sn 4398  df-pr 4400  df-altop 32604
This theorem is referenced by:  altopeq1  32609  altopeq2  32610
  Copyright terms: Public domain W3C validator