Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopeq12 Structured version   Visualization version   GIF version

Theorem altopeq12 36006
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫)

Proof of Theorem altopeq12
StepHypRef Expression
1 sneq 4583 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
2 sneq 4583 . . 3 (𝐶 = 𝐷 → {𝐶} = {𝐷})
31, 2anim12i 613 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷}))
4 altopthsn 36005 . 2 (⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫ ↔ ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷}))
53, 4sylibr 234 1 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  {csn 4573  caltop 36000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-altop 36002
This theorem is referenced by:  altopeq1  36007  altopeq2  36008
  Copyright terms: Public domain W3C validator