![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopeq12 | Structured version Visualization version GIF version |
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4407 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | sneq 4407 | . . 3 ⊢ (𝐶 = 𝐷 → {𝐶} = {𝐷}) | |
3 | 1, 2 | anim12i 608 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷})) |
4 | altopthsn 32607 | . 2 ⊢ (⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫ ↔ ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷})) | |
5 | 3, 4 | sylibr 226 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 {csn 4397 ⟪caltop 32602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-sn 4398 df-pr 4400 df-altop 32604 |
This theorem is referenced by: altopeq1 32609 altopeq2 32610 |
Copyright terms: Public domain | W3C validator |