Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopeq12 | Structured version Visualization version GIF version |
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4536 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | sneq 4536 | . . 3 ⊢ (𝐶 = 𝐷 → {𝐶} = {𝐷}) | |
3 | 1, 2 | anim12i 616 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷})) |
4 | altopthsn 33919 | . 2 ⊢ (⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫ ↔ ({𝐴} = {𝐵} ∧ {𝐶} = {𝐷})) | |
5 | 3, 4 | sylibr 237 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 {csn 4526 ⟪caltop 33914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-altop 33916 |
This theorem is referenced by: altopeq1 33921 altopeq2 33922 |
Copyright terms: Public domain | W3C validator |