Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopeq2 Structured version   Visualization version   GIF version

Theorem altopeq2 35469
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopeq2 (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)

Proof of Theorem altopeq2
StepHypRef Expression
1 eqid 2726 . 2 𝐶 = 𝐶
2 altopeq12 35467 . 2 ((𝐶 = 𝐶𝐴 = 𝐵) → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)
31, 2mpan 687 1 (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  caltop 35461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-sn 4624  df-pr 4626  df-altop 35463
This theorem is referenced by:  sbcaltop  35486
  Copyright terms: Public domain W3C validator