![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopeq2 | Structured version Visualization version GIF version |
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
Ref | Expression |
---|---|
altopeq2 | ⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . 2 ⊢ 𝐶 = 𝐶 | |
2 | altopeq12 35943 | . 2 ⊢ ((𝐶 = 𝐶 ∧ 𝐴 = 𝐵) → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ⟪caltop 35937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-sn 4631 df-pr 4633 df-altop 35939 |
This theorem is referenced by: sbcaltop 35962 |
Copyright terms: Public domain | W3C validator |