Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopeq2 Structured version   Visualization version   GIF version

Theorem altopeq2 35945
Description: Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopeq2 (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)

Proof of Theorem altopeq2
StepHypRef Expression
1 eqid 2729 . 2 𝐶 = 𝐶
2 altopeq12 35943 . 2 ((𝐶 = 𝐶𝐴 = 𝐵) → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)
31, 2mpan 690 1 (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  caltop 35937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-sn 4586  df-pr 4588  df-altop 35939
This theorem is referenced by:  sbcaltop  35962
  Copyright terms: Public domain W3C validator