| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orim123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.) |
| Ref | Expression |
|---|---|
| 3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
| Ref | Expression |
|---|---|
| 3orim123d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 1, 2 | orim12d 966 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → (𝜒 ∨ 𝜏))) |
| 4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
| 5 | 3, 4 | orim12d 966 | . 2 ⊢ (𝜑 → (((𝜓 ∨ 𝜃) ∨ 𝜂) → ((𝜒 ∨ 𝜏) ∨ 𝜁))) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜒 ∨ 𝜏 ∨ 𝜁) ↔ ((𝜒 ∨ 𝜏) ∨ 𝜁)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 |
| This theorem is referenced by: fr3nr 7748 soxp 8108 poxp3 8129 zorn2lem6 10454 fpwwe2lem11 10594 fpwwe2lem12 10595 sltres 27574 colinearalglem4 28836 chnso 32940 constrconj 33735 vonf1owev 35095 colinearxfr 36063 weiunso 36454 fin2so 37601 frege133d 43754 el1fzopredsuc 47326 fmtno4prmfac 47573 |
| Copyright terms: Public domain | W3C validator |