MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orim123d Structured version   Visualization version   GIF version

Theorem 3orim123d 1444
Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3orim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orim12d 963 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orim12d 963 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) → ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088
This theorem is referenced by:  fr3nr  7654  soxp  8001  zorn2lem6  10307  fpwwe2lem11  10447  fpwwe2lem12  10448  colinearalglem4  27326  sltres  33914  colinearxfr  34426  fin2so  35812  frege133d  41586  el1fzopredsuc  45061  fmtno4prmfac  45268
  Copyright terms: Public domain W3C validator