MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orim123d Structured version   Visualization version   GIF version

Theorem 3orim123d 1446
Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3orim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3orim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2orim12d 966 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4orim12d 966 . 2 (𝜑 → (((𝜓𝜃) ∨ 𝜂) → ((𝜒𝜏) ∨ 𝜁)))
6 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
7 df-3or 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∨ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087
This theorem is referenced by:  fr3nr  7766  soxp  8128  poxp3  8149  zorn2lem6  10515  fpwwe2lem11  10655  fpwwe2lem12  10656  sltres  27626  colinearalglem4  28888  chnso  32994  constrconj  33779  colinearxfr  36093  weiunso  36484  fin2so  37631  frege133d  43789  el1fzopredsuc  47354  fmtno4prmfac  47586
  Copyright terms: Public domain W3C validator