MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr Structured version   Visualization version   GIF version

Theorem nb3grpr 29215
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐸   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐸(𝑥,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem nb3grpr
StepHypRef Expression
1 id 22 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
2 prcom 4741 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
32eleq1i 2820 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
4 prcom 4741 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
54eleq1i 2820 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
6 prcom 4741 . . . . . . . . . 10 {𝐶, 𝐴} = {𝐴, 𝐶}
76eleq1i 2820 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
83, 5, 73anbi123i 1152 . . . . . . . 8 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
9 3anrot 1097 . . . . . . . 8 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
108, 9bitr4i 277 . . . . . . 7 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
1110a1i 11 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
121, 11biadanii 820 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
13 an6 1441 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1412, 13bitri 274 . . . 4 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1514a1i 11 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
16 nb3grpr.v . . . . 5 𝑉 = (Vtx‘𝐺)
17 nb3grpr.e . . . . 5 𝐸 = (Edg‘𝐺)
18 nb3grpr.g . . . . 5 (𝜑𝐺 ∈ USGraph)
19 nb3grpr.t . . . . 5 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
20 nb3grpr.s . . . . 5 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2116, 17, 18, 19, 20nb3grprlem1 29213 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
22 tprot 4758 . . . . . 6 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
2319, 22eqtrdi 2784 . . . . 5 (𝜑𝑉 = {𝐵, 𝐶, 𝐴})
24 3anrot 1097 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐶𝑍𝐴𝑋))
2520, 24sylib 217 . . . . 5 (𝜑 → (𝐵𝑌𝐶𝑍𝐴𝑋))
2616, 17, 18, 23, 25nb3grprlem1 29213 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)))
27 tprot 4758 . . . . . 6 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2819, 27eqtr4di 2786 . . . . 5 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
29 3anrot 1097 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3020, 29sylibr 233 . . . . 5 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
3116, 17, 18, 28, 30nb3grprlem1 29213 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3221, 26, 313anbi123d 1432 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
33 nb3grpr.n . . . . 5 (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
3416, 17, 18, 19, 20, 33nb3grprlem2 29214 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
35 necom 2991 . . . . . . . 8 (𝐴𝐵𝐵𝐴)
36 necom 2991 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
37 biid 260 . . . . . . . 8 (𝐵𝐶𝐵𝐶)
3835, 36, 373anbi123i 1152 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
39 3anrot 1097 . . . . . . 7 ((𝐵𝐶𝐵𝐴𝐶𝐴) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
4038, 39bitr4i 277 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐶𝐵𝐴𝐶𝐴))
4133, 40sylib 217 . . . . 5 (𝜑 → (𝐵𝐶𝐵𝐴𝐶𝐴))
4216, 17, 18, 23, 25, 41nb3grprlem2 29214 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
43 3anrot 1097 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐴𝐶𝐵𝐶𝐴𝐵))
44 necom 2991 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
45 biid 260 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
4636, 44, 453anbi123i 1152 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4743, 46bitri 274 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4833, 47sylib 217 . . . . 5 (𝜑 → (𝐶𝐴𝐶𝐵𝐴𝐵))
4916, 17, 18, 28, 30, 48nb3grprlem2 29214 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
5034, 42, 493anbi123d 1432 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
5115, 32, 503bitr2d 306 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
52 oveq2 7434 . . . . . 6 (𝑥 = 𝐴 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐴))
5352eqeq1d 2730 . . . . 5 (𝑥 = 𝐴 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
54532rexbidv 3217 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
55 oveq2 7434 . . . . . 6 (𝑥 = 𝐵 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐵))
5655eqeq1d 2730 . . . . 5 (𝑥 = 𝐵 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
57562rexbidv 3217 . . . 4 (𝑥 = 𝐵 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
58 oveq2 7434 . . . . . 6 (𝑥 = 𝐶 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐶))
5958eqeq1d 2730 . . . . 5 (𝑥 = 𝐶 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
60592rexbidv 3217 . . . 4 (𝑥 = 𝐶 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
6154, 57, 60raltpg 4707 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
6220, 61syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
63 raleq 3320 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6463bicomd 222 . . 3 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6519, 64syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6651, 62, 653bitr2d 306 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  cdif 3946  {csn 4632  {cpr 4634  {ctp 4636  cfv 6553  (class class class)co 7426  Vtxcvtx 28829  Edgcedg 28880  USGraphcusgr 28982   NeighbVtx cnbgr 29165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14330  df-edg 28881  df-upgr 28915  df-umgr 28916  df-usgr 28984  df-nbgr 29166
This theorem is referenced by:  cusgr3vnbpr  29269
  Copyright terms: Public domain W3C validator