MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr Structured version   Visualization version   GIF version

Theorem nb3grpr 27749
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐸   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐸(𝑥,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem nb3grpr
StepHypRef Expression
1 id 22 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
2 prcom 4668 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
32eleq1i 2829 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
4 prcom 4668 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
54eleq1i 2829 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
6 prcom 4668 . . . . . . . . . 10 {𝐶, 𝐴} = {𝐴, 𝐶}
76eleq1i 2829 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
83, 5, 73anbi123i 1154 . . . . . . . 8 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
9 3anrot 1099 . . . . . . . 8 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
108, 9bitr4i 277 . . . . . . 7 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
1110a1i 11 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
121, 11biadanii 819 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
13 an6 1444 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1412, 13bitri 274 . . . 4 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1514a1i 11 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
16 nb3grpr.v . . . . 5 𝑉 = (Vtx‘𝐺)
17 nb3grpr.e . . . . 5 𝐸 = (Edg‘𝐺)
18 nb3grpr.g . . . . 5 (𝜑𝐺 ∈ USGraph)
19 nb3grpr.t . . . . 5 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
20 nb3grpr.s . . . . 5 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2116, 17, 18, 19, 20nb3grprlem1 27747 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
22 tprot 4685 . . . . . 6 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
2319, 22eqtrdi 2794 . . . . 5 (𝜑𝑉 = {𝐵, 𝐶, 𝐴})
24 3anrot 1099 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐶𝑍𝐴𝑋))
2520, 24sylib 217 . . . . 5 (𝜑 → (𝐵𝑌𝐶𝑍𝐴𝑋))
2616, 17, 18, 23, 25nb3grprlem1 27747 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)))
27 tprot 4685 . . . . . 6 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2819, 27eqtr4di 2796 . . . . 5 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
29 3anrot 1099 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3020, 29sylibr 233 . . . . 5 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
3116, 17, 18, 28, 30nb3grprlem1 27747 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3221, 26, 313anbi123d 1435 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
33 nb3grpr.n . . . . 5 (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
3416, 17, 18, 19, 20, 33nb3grprlem2 27748 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
35 necom 2997 . . . . . . . 8 (𝐴𝐵𝐵𝐴)
36 necom 2997 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
37 biid 260 . . . . . . . 8 (𝐵𝐶𝐵𝐶)
3835, 36, 373anbi123i 1154 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
39 3anrot 1099 . . . . . . 7 ((𝐵𝐶𝐵𝐴𝐶𝐴) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
4038, 39bitr4i 277 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐶𝐵𝐴𝐶𝐴))
4133, 40sylib 217 . . . . 5 (𝜑 → (𝐵𝐶𝐵𝐴𝐶𝐴))
4216, 17, 18, 23, 25, 41nb3grprlem2 27748 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
43 3anrot 1099 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐴𝐶𝐵𝐶𝐴𝐵))
44 necom 2997 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
45 biid 260 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
4636, 44, 453anbi123i 1154 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4743, 46bitri 274 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4833, 47sylib 217 . . . . 5 (𝜑 → (𝐶𝐴𝐶𝐵𝐴𝐵))
4916, 17, 18, 28, 30, 48nb3grprlem2 27748 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
5034, 42, 493anbi123d 1435 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
5115, 32, 503bitr2d 307 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
52 oveq2 7283 . . . . . 6 (𝑥 = 𝐴 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐴))
5352eqeq1d 2740 . . . . 5 (𝑥 = 𝐴 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
54532rexbidv 3229 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
55 oveq2 7283 . . . . . 6 (𝑥 = 𝐵 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐵))
5655eqeq1d 2740 . . . . 5 (𝑥 = 𝐵 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
57562rexbidv 3229 . . . 4 (𝑥 = 𝐵 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
58 oveq2 7283 . . . . . 6 (𝑥 = 𝐶 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐶))
5958eqeq1d 2740 . . . . 5 (𝑥 = 𝐶 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
60592rexbidv 3229 . . . 4 (𝑥 = 𝐶 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
6154, 57, 60raltpg 4634 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
6220, 61syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
63 raleq 3342 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6463bicomd 222 . . 3 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6519, 64syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6651, 62, 653bitr2d 307 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  {csn 4561  {cpr 4563  {ctp 4565  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-umgr 27453  df-usgr 27521  df-nbgr 27700
This theorem is referenced by:  cusgr3vnbpr  27803
  Copyright terms: Public domain W3C validator