Proof of Theorem nb3grpr
| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
| 2 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| 3 | 2 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸) |
| 4 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
| 5 | 4 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸) |
| 6 | | prcom 4732 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
| 7 | 6 | eleq1i 2832 |
. . . . . . . . 9
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸) |
| 8 | 3, 5, 7 | 3anbi123i 1156 |
. . . . . . . 8
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
| 9 | | 3anrot 1100 |
. . . . . . . 8
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
| 10 | 8, 9 | bitr4i 278 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 12 | 1, 11 | biadanii 822 |
. . . . 5
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 13 | | an6 1447 |
. . . . 5
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 14 | 12, 13 | bitri 275 |
. . . 4
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 15 | 14 | a1i 11 |
. . 3
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 16 | | nb3grpr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 17 | | nb3grpr.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
| 18 | | nb3grpr.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ USGraph) |
| 19 | | nb3grpr.t |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
| 20 | | nb3grpr.s |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 21 | 16, 17, 18, 19, 20 | nb3grprlem1 29397 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
| 22 | | tprot 4749 |
. . . . . 6
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
| 23 | 19, 22 | eqtrdi 2793 |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐵, 𝐶, 𝐴}) |
| 24 | | 3anrot 1100 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ↔ (𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋)) |
| 25 | 20, 24 | sylib 218 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋)) |
| 26 | 16, 17, 18, 23, 25 | nb3grprlem1 29397 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
| 27 | | tprot 4749 |
. . . . . 6
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
| 28 | 19, 27 | eqtr4di 2795 |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐶, 𝐴, 𝐵}) |
| 29 | | 3anrot 1100 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 30 | 20, 29 | sylibr 234 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
| 31 | 16, 17, 18, 28, 30 | nb3grprlem1 29397 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
| 32 | 21, 26, 31 | 3anbi123d 1438 |
. . 3
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
| 33 | | nb3grpr.n |
. . . . 5
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
| 34 | 16, 17, 18, 19, 20, 33 | nb3grprlem2 29398 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
| 35 | | necom 2994 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
| 36 | | necom 2994 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
| 37 | | biid 261 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| 38 | 35, 36, 37 | 3anbi123i 1156 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶)) |
| 39 | | 3anrot 1100 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶)) |
| 40 | 38, 39 | bitr4i 278 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
| 41 | 33, 40 | sylib 218 |
. . . . 5
⊢ (𝜑 → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
| 42 | 16, 17, 18, 23, 25, 41 | nb3grprlem2 29398 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
| 43 | | 3anrot 1100 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵)) |
| 44 | | necom 2994 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
| 45 | | biid 261 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐵) |
| 46 | 36, 44, 45 | 3anbi123i 1156 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ↔ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 47 | 43, 46 | bitri 275 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 48 | 33, 47 | sylib 218 |
. . . . 5
⊢ (𝜑 → (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 49 | 16, 17, 18, 28, 30, 48 | nb3grprlem2 29398 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
| 50 | 34, 42, 49 | 3anbi123d 1438 |
. . 3
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
| 51 | 15, 32, 50 | 3bitr2d 307 |
. 2
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
| 52 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐴)) |
| 53 | 52 | eqeq1d 2739 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
| 54 | 53 | 2rexbidv 3222 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
| 55 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐵)) |
| 56 | 55 | eqeq1d 2739 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
| 57 | 56 | 2rexbidv 3222 |
. . . 4
⊢ (𝑥 = 𝐵 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
| 58 | | oveq2 7439 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐶)) |
| 59 | 58 | eqeq1d 2739 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
| 60 | 59 | 2rexbidv 3222 |
. . . 4
⊢ (𝑥 = 𝐶 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
| 61 | 54, 57, 60 | raltpg 4698 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
| 62 | 20, 61 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
| 63 | | raleq 3323 |
. . . 4
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
| 64 | 63 | bicomd 223 |
. . 3
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
| 65 | 19, 64 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
| 66 | 51, 62, 65 | 3bitr2d 307 |
1
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |