Proof of Theorem nb3grpr
Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) |
2 | | prcom 4668 |
. . . . . . . . . 10
⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
3 | 2 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸) |
4 | | prcom 4668 |
. . . . . . . . . 10
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
5 | 4 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸) |
6 | | prcom 4668 |
. . . . . . . . . 10
⊢ {𝐶, 𝐴} = {𝐴, 𝐶} |
7 | 6 | eleq1i 2829 |
. . . . . . . . 9
⊢ ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸) |
8 | 3, 5, 7 | 3anbi123i 1154 |
. . . . . . . 8
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
9 | | 3anrot 1099 |
. . . . . . . 8
⊢ (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)) |
10 | 8, 9 | bitr4i 277 |
. . . . . . 7
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) |
11 | 10 | a1i 11 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
12 | 1, 11 | biadanii 819 |
. . . . 5
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
13 | | an6 1444 |
. . . . 5
⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
14 | 12, 13 | bitri 274 |
. . . 4
⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
15 | 14 | a1i 11 |
. . 3
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
16 | | nb3grpr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
17 | | nb3grpr.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
18 | | nb3grpr.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ USGraph) |
19 | | nb3grpr.t |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐴, 𝐵, 𝐶}) |
20 | | nb3grpr.s |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
21 | 16, 17, 18, 19, 20 | nb3grprlem1 27747 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))) |
22 | | tprot 4685 |
. . . . . 6
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} |
23 | 19, 22 | eqtrdi 2794 |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐵, 𝐶, 𝐴}) |
24 | | 3anrot 1099 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ↔ (𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋)) |
25 | 20, 24 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋)) |
26 | 16, 17, 18, 23, 25 | nb3grprlem1 27747 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))) |
27 | | tprot 4685 |
. . . . . 6
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
28 | 19, 27 | eqtr4di 2796 |
. . . . 5
⊢ (𝜑 → 𝑉 = {𝐶, 𝐴, 𝐵}) |
29 | | 3anrot 1099 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
30 | 20, 29 | sylibr 233 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
31 | 16, 17, 18, 28, 30 | nb3grprlem1 27747 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))) |
32 | 21, 26, 31 | 3anbi123d 1435 |
. . 3
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))) |
33 | | nb3grpr.n |
. . . . 5
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
34 | 16, 17, 18, 19, 20, 33 | nb3grprlem2 27748 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
35 | | necom 2997 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) |
36 | | necom 2997 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) |
37 | | biid 260 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
38 | 35, 36, 37 | 3anbi123i 1154 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶)) |
39 | | 3anrot 1099 |
. . . . . . 7
⊢ ((𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴) ↔ (𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶)) |
40 | 38, 39 | bitr4i 277 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
41 | 33, 40 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴)) |
42 | 16, 17, 18, 23, 25, 41 | nb3grprlem2 27748 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
43 | | 3anrot 1099 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵)) |
44 | | necom 2997 |
. . . . . . . 8
⊢ (𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵) |
45 | | biid 260 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐵) |
46 | 36, 44, 45 | 3anbi123i 1154 |
. . . . . . 7
⊢ ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ↔ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
47 | 43, 46 | bitri 274 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ↔ (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
48 | 33, 47 | sylib 217 |
. . . . 5
⊢ (𝜑 → (𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
49 | 16, 17, 18, 28, 30, 48 | nb3grprlem2 27748 |
. . . 4
⊢ (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
50 | 34, 42, 49 | 3anbi123d 1435 |
. . 3
⊢ (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
51 | 15, 32, 50 | 3bitr2d 307 |
. 2
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
52 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐴)) |
53 | 52 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
54 | 53 | 2rexbidv 3229 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧})) |
55 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐵)) |
56 | 55 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
57 | 56 | 2rexbidv 3229 |
. . . 4
⊢ (𝑥 = 𝐵 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧})) |
58 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐶)) |
59 | 58 | eqeq1d 2740 |
. . . . 5
⊢ (𝑥 = 𝐶 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
60 | 59 | 2rexbidv 3229 |
. . . 4
⊢ (𝑥 = 𝐶 → (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})) |
61 | 54, 57, 60 | raltpg 4634 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
62 | 20, 61 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))) |
63 | | raleq 3342 |
. . . 4
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
64 | 63 | bicomd 222 |
. . 3
⊢ (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
65 | 19, 64 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |
66 | 51, 62, 65 | 3bitr2d 307 |
1
⊢ (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧})) |