MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr Structured version   Visualization version   GIF version

Theorem nb3grpr 29361
Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph)
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑦,𝐸   𝑥,𝐺,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐸(𝑥,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem nb3grpr
StepHypRef Expression
1 id 22 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
2 prcom 4708 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
32eleq1i 2825 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
4 prcom 4708 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
54eleq1i 2825 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
6 prcom 4708 . . . . . . . . . 10 {𝐶, 𝐴} = {𝐴, 𝐶}
76eleq1i 2825 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
83, 5, 73anbi123i 1155 . . . . . . . 8 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
9 3anrot 1099 . . . . . . . 8 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
108, 9bitr4i 278 . . . . . . 7 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
1110a1i 11 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
121, 11biadanii 821 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
13 an6 1447 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1412, 13bitri 275 . . . 4 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
1514a1i 11 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
16 nb3grpr.v . . . . 5 𝑉 = (Vtx‘𝐺)
17 nb3grpr.e . . . . 5 𝐸 = (Edg‘𝐺)
18 nb3grpr.g . . . . 5 (𝜑𝐺 ∈ USGraph)
19 nb3grpr.t . . . . 5 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
20 nb3grpr.s . . . . 5 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
2116, 17, 18, 19, 20nb3grprlem1 29359 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
22 tprot 4725 . . . . . 6 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
2319, 22eqtrdi 2786 . . . . 5 (𝜑𝑉 = {𝐵, 𝐶, 𝐴})
24 3anrot 1099 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐶𝑍𝐴𝑋))
2520, 24sylib 218 . . . . 5 (𝜑 → (𝐵𝑌𝐶𝑍𝐴𝑋))
2616, 17, 18, 23, 25nb3grprlem1 29359 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸)))
27 tprot 4725 . . . . . 6 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2819, 27eqtr4di 2788 . . . . 5 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
29 3anrot 1099 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3020, 29sylibr 234 . . . . 5 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
3116, 17, 18, 28, 30nb3grprlem1 29359 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3221, 26, 313anbi123d 1438 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
33 nb3grpr.n . . . . 5 (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
3416, 17, 18, 19, 20, 33nb3grprlem2 29360 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
35 necom 2985 . . . . . . . 8 (𝐴𝐵𝐵𝐴)
36 necom 2985 . . . . . . . 8 (𝐴𝐶𝐶𝐴)
37 biid 261 . . . . . . . 8 (𝐵𝐶𝐵𝐶)
3835, 36, 373anbi123i 1155 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
39 3anrot 1099 . . . . . . 7 ((𝐵𝐶𝐵𝐴𝐶𝐴) ↔ (𝐵𝐴𝐶𝐴𝐵𝐶))
4038, 39bitr4i 278 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐵𝐶𝐵𝐴𝐶𝐴))
4133, 40sylib 218 . . . . 5 (𝜑 → (𝐵𝐶𝐵𝐴𝐶𝐴))
4216, 17, 18, 23, 25, 41nb3grprlem2 29360 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
43 3anrot 1099 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐴𝐶𝐵𝐶𝐴𝐵))
44 necom 2985 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
45 biid 261 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
4636, 44, 453anbi123i 1155 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4743, 46bitri 275 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) ↔ (𝐶𝐴𝐶𝐵𝐴𝐵))
4833, 47sylib 218 . . . . 5 (𝜑 → (𝐶𝐴𝐶𝐵𝐴𝐵))
4916, 17, 18, 28, 30, 48nb3grprlem2 29360 . . . 4 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
5034, 42, 493anbi123d 1438 . . 3 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐶, 𝐴} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
5115, 32, 503bitr2d 307 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
52 oveq2 7413 . . . . . 6 (𝑥 = 𝐴 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐴))
5352eqeq1d 2737 . . . . 5 (𝑥 = 𝐴 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
54532rexbidv 3206 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧}))
55 oveq2 7413 . . . . . 6 (𝑥 = 𝐵 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐵))
5655eqeq1d 2737 . . . . 5 (𝑥 = 𝐵 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
57562rexbidv 3206 . . . 4 (𝑥 = 𝐵 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧}))
58 oveq2 7413 . . . . . 6 (𝑥 = 𝐶 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝐶))
5958eqeq1d 2737 . . . . 5 (𝑥 = 𝐶 → ((𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
60592rexbidv 3206 . . . 4 (𝑥 = 𝐶 → (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧}))
6154, 57, 60raltpg 4674 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
6220, 61syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ (∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐴) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐵) = {𝑦, 𝑧} ∧ ∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝐶) = {𝑦, 𝑧})))
63 raleq 3302 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6463bicomd 223 . . 3 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6519, 64syl 17 . 2 (𝜑 → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧} ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
6651, 62, 653bitr2d 307 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ∀𝑥𝑉𝑦𝑉𝑧 ∈ (𝑉 ∖ {𝑦})(𝐺 NeighbVtx 𝑥) = {𝑦, 𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  {csn 4601  {cpr 4603  {ctp 4605  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128   NeighbVtx cnbgr 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-upgr 29061  df-umgr 29062  df-usgr 29130  df-nbgr 29312
This theorem is referenced by:  cusgr3vnbpr  29415
  Copyright terms: Public domain W3C validator