Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Structured version   Visualization version   GIF version

Theorem paddasslem10 39354
Description: Lemma for paddass 39363. Use paddasslem4 39348 to eliminate 𝑠 from paddasslem9 39353. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l ≀ = (leβ€˜πΎ)
paddasslem.j ∨ = (joinβ€˜πΎ)
paddasslem.a 𝐴 = (Atomsβ€˜πΎ)
paddasslem.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
paddasslem10 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))

Proof of Theorem paddasslem10
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl11 1245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝐾 ∈ HL)
2 simpl3l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ 𝐴)
3 simpl3r 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘Ÿ ∈ 𝐴)
41, 2, 33jca 1125 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴))
5 an6 1441 . . . . . 6 (((𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) ↔ ((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) ∧ (π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) ∧ (𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍)))
6 ssel2 3968 . . . . . . 7 ((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝐴)
7 ssel2 3968 . . . . . . 7 ((π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) β†’ 𝑦 ∈ 𝐴)
8 ssel2 3968 . . . . . . 7 ((𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍) β†’ 𝑧 ∈ 𝐴)
96, 7, 83anim123i 1148 . . . . . 6 (((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) ∧ (π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) ∧ (𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
105, 9sylbi 216 . . . . 5 (((𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
11103ad2antl2 1183 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
1211adantrr 715 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
13 simpl12 1246 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 β‰  𝑧)
14 simpl13 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘₯ β‰  𝑦)
15 simprr1 1218 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦))
1613, 14, 153jca 1125 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦 ∧ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦)))
17 simprr2 1219 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ))
18 simprr3 1220 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘Ÿ ≀ (𝑦 ∨ 𝑧))
19 paddasslem.l . . . 4 ≀ = (leβ€˜πΎ)
20 paddasslem.j . . . 4 ∨ = (joinβ€˜πΎ)
21 paddasslem.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2219, 20, 21paddasslem4 39348 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦 ∧ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦))) ∧ (𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧))) β†’ βˆƒπ‘  ∈ 𝐴 (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
234, 12, 16, 17, 18, 22syl32anc 1375 . 2 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ βˆƒπ‘  ∈ 𝐴 (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
24 simpl2 1189 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴))
25 simpl3 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴))
261, 24, 253jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)))
2726adantr 479 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)))
28 simplrl 775 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍))
2915, 18jca 510 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))
3029adantr 479 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))
31 simprl 769 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ∈ 𝐴)
32 simprrl 779 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ≀ (π‘₯ ∨ 𝑦))
33 simprrr 780 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ≀ (𝑝 ∨ 𝑧))
3431, 32, 333jca 1125 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (𝑠 ∈ 𝐴 ∧ 𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
35 paddasslem.p . . . 4 + = (+π‘ƒβ€˜πΎ)
3619, 20, 21, 35paddasslem9 39353 . . 3 (((𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
3727, 28, 30, 34, 36syl13anc 1369 . 2 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
3823, 37rexlimddv 3151 1 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060   βŠ† wss 3941   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  lecple 17234  joincjn 18297  Atomscatm 38787  HLchlt 38874  +𝑃cpadd 39320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-lat 18418  df-clat 18485  df-oposet 38700  df-ol 38702  df-oml 38703  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875  df-padd 39321
This theorem is referenced by:  paddasslem14  39358
  Copyright terms: Public domain W3C validator