Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem10 Structured version   Visualization version   GIF version

Theorem paddasslem10 38338
Description: Lemma for paddass 38347. Use paddasslem4 38332 to eliminate 𝑠 from paddasslem9 38337. (Contributed by NM, 9-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l ≀ = (leβ€˜πΎ)
paddasslem.j ∨ = (joinβ€˜πΎ)
paddasslem.a 𝐴 = (Atomsβ€˜πΎ)
paddasslem.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
paddasslem10 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))

Proof of Theorem paddasslem10
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simpl11 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝐾 ∈ HL)
2 simpl3l 1229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ 𝐴)
3 simpl3r 1230 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘Ÿ ∈ 𝐴)
41, 2, 33jca 1129 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴))
5 an6 1446 . . . . . 6 (((𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) ↔ ((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) ∧ (π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) ∧ (𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍)))
6 ssel2 3940 . . . . . . 7 ((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝐴)
7 ssel2 3940 . . . . . . 7 ((π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) β†’ 𝑦 ∈ 𝐴)
8 ssel2 3940 . . . . . . 7 ((𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍) β†’ 𝑧 ∈ 𝐴)
96, 7, 83anim123i 1152 . . . . . 6 (((𝑋 βŠ† 𝐴 ∧ π‘₯ ∈ 𝑋) ∧ (π‘Œ βŠ† 𝐴 ∧ 𝑦 ∈ π‘Œ) ∧ (𝑍 βŠ† 𝐴 ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
105, 9sylbi 216 . . . . 5 (((𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
11103ad2antl2 1187 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍)) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
1211adantrr 716 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))
13 simpl12 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 β‰  𝑧)
14 simpl13 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘₯ β‰  𝑦)
15 simprr1 1222 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦))
1613, 14, 153jca 1129 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦 ∧ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦)))
17 simprr2 1223 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ))
18 simprr3 1224 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ π‘Ÿ ≀ (𝑦 ∨ 𝑧))
19 paddasslem.l . . . 4 ≀ = (leβ€˜πΎ)
20 paddasslem.j . . . 4 ∨ = (joinβ€˜πΎ)
21 paddasslem.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2219, 20, 21paddasslem4 38332 . . 3 ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴) ∧ (π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦 ∧ Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦))) ∧ (𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧))) β†’ βˆƒπ‘  ∈ 𝐴 (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
234, 12, 16, 17, 18, 22syl32anc 1379 . 2 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ βˆƒπ‘  ∈ 𝐴 (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
24 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴))
25 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴))
261, 24, 253jca 1129 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)))
2726adantr 482 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)))
28 simplrl 776 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍))
2915, 18jca 513 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))
3029adantr 482 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))
31 simprl 770 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ∈ 𝐴)
32 simprrl 780 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ≀ (π‘₯ ∨ 𝑦))
33 simprrr 781 . . . 4 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑠 ≀ (𝑝 ∨ 𝑧))
3431, 32, 333jca 1129 . . 3 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ (𝑠 ∈ 𝐴 ∧ 𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))
35 paddasslem.p . . . 4 + = (+π‘ƒβ€˜πΎ)
3619, 20, 21, 35paddasslem9 38337 . . 3 (((𝐾 ∈ HL ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)) ∧ (𝑠 ∈ 𝐴 ∧ 𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
3727, 28, 30, 34, 36syl13anc 1373 . 2 (((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) ∧ (𝑠 ∈ 𝐴 ∧ (𝑠 ≀ (π‘₯ ∨ 𝑦) ∧ 𝑠 ≀ (𝑝 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
3823, 37rexlimddv 3155 1 ((((𝐾 ∈ HL ∧ 𝑝 β‰  𝑧 ∧ π‘₯ β‰  𝑦) ∧ (𝑋 βŠ† 𝐴 ∧ π‘Œ βŠ† 𝐴 ∧ 𝑍 βŠ† 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ π‘Ÿ ∈ 𝐴)) ∧ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ π‘Œ ∧ 𝑧 ∈ 𝑍) ∧ (Β¬ π‘Ÿ ≀ (π‘₯ ∨ 𝑦) ∧ 𝑝 ≀ (π‘₯ ∨ π‘Ÿ) ∧ π‘Ÿ ≀ (𝑦 ∨ 𝑧)))) β†’ 𝑝 ∈ ((𝑋 + π‘Œ) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆƒwrex 3070   βŠ† wss 3911   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  lecple 17145  joincjn 18205  Atomscatm 37771  HLchlt 37858  +𝑃cpadd 38304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-padd 38305
This theorem is referenced by:  paddasslem14  38342
  Copyright terms: Public domain W3C validator