MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzadd2 Structured version   Visualization version   GIF version

Theorem fzadd2 13220
Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzadd2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))

Proof of Theorem fzadd2
StepHypRef Expression
1 elfz1 13173 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2 elfz1 13173 . . 3 ((𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐾 ∈ (𝑂...𝑃) ↔ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)))
31, 2bi2anan9 635 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃))))
4 an6 1443 . . 3 (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)))
5 zre 12253 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 12253 . . . . . . . . . . 11 (𝑂 ∈ ℤ → 𝑂 ∈ ℝ)
75, 6anim12i 612 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ))
8 zre 12253 . . . . . . . . . . 11 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
9 zre 12253 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
108, 9anim12i 612 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ))
11 le2add 11387 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
127, 10, 11syl2an 595 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
1312impr 454 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
14133adantr3 1169 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
1514adantlr 711 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
16 zre 12253 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 12253 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
1816, 17anim12i 612 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
19 le2add 11387 . . . . . . . . . 10 (((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2010, 18, 19syl2anr 596 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2120impr 454 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
22213adantr2 1168 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
2322adantll 710 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
24 zaddcl 12290 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
25 zaddcl 12290 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 + 𝑂) ∈ ℤ)
26 zaddcl 12290 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 + 𝑃) ∈ ℤ)
27 elfz 13174 . . . . . . . . . 10 (((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝑂) ∈ ℤ ∧ (𝑁 + 𝑃) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
2824, 25, 26, 27syl3an 1158 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
29283expb 1118 . . . . . . . 8 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3029ancoms 458 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
31303ad2antr1 1186 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3215, 23, 31mpbir2and 709 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
3332ex 412 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
3433an4s 656 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
354, 34syl5bi 241 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
363, 35sylbid 239 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801   + caddc 10805  cle 10941  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-fz 13169
This theorem is referenced by:  fzadd2d  39914
  Copyright terms: Public domain W3C validator