MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzadd2 Structured version   Visualization version   GIF version

Theorem fzadd2 13600
Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzadd2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))

Proof of Theorem fzadd2
StepHypRef Expression
1 elfz1 13553 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2 elfz1 13553 . . 3 ((𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐾 ∈ (𝑂...𝑃) ↔ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)))
31, 2bi2anan9 638 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃))))
4 an6 1446 . . 3 (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)))
5 zre 12619 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 12619 . . . . . . . . . . 11 (𝑂 ∈ ℤ → 𝑂 ∈ ℝ)
75, 6anim12i 613 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ))
8 zre 12619 . . . . . . . . . . 11 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
9 zre 12619 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
108, 9anim12i 613 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ))
11 le2add 11746 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
127, 10, 11syl2an 596 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
1312impr 454 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
14133adantr3 1171 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
1514adantlr 715 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
16 zre 12619 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 12619 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
1816, 17anim12i 613 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
19 le2add 11746 . . . . . . . . . 10 (((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2010, 18, 19syl2anr 597 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2120impr 454 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
22213adantr2 1170 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
2322adantll 714 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
24 zaddcl 12659 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
25 zaddcl 12659 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 + 𝑂) ∈ ℤ)
26 zaddcl 12659 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 + 𝑃) ∈ ℤ)
27 elfz 13554 . . . . . . . . . 10 (((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝑂) ∈ ℤ ∧ (𝑁 + 𝑃) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
2824, 25, 26, 27syl3an 1160 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
29283expb 1120 . . . . . . . 8 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3029ancoms 458 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
31303ad2antr1 1188 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3215, 23, 31mpbir2and 713 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
3332ex 412 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
3433an4s 660 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
354, 34biimtrid 242 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
363, 35sylbid 240 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107   class class class wbr 5142  (class class class)co 7432  cr 11155   + caddc 11159  cle 11297  cz 12615  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-fz 13549
This theorem is referenced by:  fzadd2d  41980
  Copyright terms: Public domain W3C validator