MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzadd2 Structured version   Visualization version   GIF version

Theorem fzadd2 12797
Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzadd2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))

Proof of Theorem fzadd2
StepHypRef Expression
1 elfz1 12752 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2 elfz1 12752 . . 3 ((𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐾 ∈ (𝑂...𝑃) ↔ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)))
31, 2bi2anan9 635 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃))))
4 an6 1437 . . 3 (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)))
5 zre 11838 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 11838 . . . . . . . . . . 11 (𝑂 ∈ ℤ → 𝑂 ∈ ℝ)
75, 6anim12i 612 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ))
8 zre 11838 . . . . . . . . . . 11 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
9 zre 11838 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
108, 9anim12i 612 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ))
11 le2add 10975 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
127, 10, 11syl2an 595 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
1312impr 455 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
14133adantr3 1164 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
1514adantlr 711 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
16 zre 11838 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 11838 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
1816, 17anim12i 612 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
19 le2add 10975 . . . . . . . . . 10 (((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2010, 18, 19syl2anr 596 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2120impr 455 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
22213adantr2 1163 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
2322adantll 710 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
24 zaddcl 11876 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
25 zaddcl 11876 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 + 𝑂) ∈ ℤ)
26 zaddcl 11876 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 + 𝑃) ∈ ℤ)
27 elfz 12753 . . . . . . . . . 10 (((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝑂) ∈ ℤ ∧ (𝑁 + 𝑃) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
2824, 25, 26, 27syl3an 1153 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
29283expb 1113 . . . . . . . 8 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3029ancoms 459 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
31303ad2antr1 1181 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3215, 23, 31mpbir2and 709 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
3332ex 413 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
3433an4s 656 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
354, 34syl5bi 243 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
363, 35sylbid 241 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080  wcel 2081   class class class wbr 4966  (class class class)co 7021  cr 10387   + caddc 10391  cle 10527  cz 11834  ...cfz 12747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-n0 11751  df-z 11835  df-fz 12748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator