MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzadd2 Structured version   Visualization version   GIF version

Theorem fzadd2 13477
Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzadd2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))

Proof of Theorem fzadd2
StepHypRef Expression
1 elfz1 13430 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2 elfz1 13430 . . 3 ((𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐾 ∈ (𝑂...𝑃) ↔ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)))
31, 2bi2anan9 638 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃))))
4 an6 1446 . . 3 (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)))
5 zre 12504 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 12504 . . . . . . . . . . 11 (𝑂 ∈ ℤ → 𝑂 ∈ ℝ)
75, 6anim12i 614 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ))
8 zre 12504 . . . . . . . . . . 11 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
9 zre 12504 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
108, 9anim12i 614 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ))
11 le2add 11638 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
127, 10, 11syl2an 597 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
1312impr 456 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
14133adantr3 1172 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
1514adantlr 714 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
16 zre 12504 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 12504 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
1816, 17anim12i 614 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
19 le2add 11638 . . . . . . . . . 10 (((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2010, 18, 19syl2anr 598 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2120impr 456 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
22213adantr2 1171 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
2322adantll 713 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
24 zaddcl 12544 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
25 zaddcl 12544 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 + 𝑂) ∈ ℤ)
26 zaddcl 12544 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 + 𝑃) ∈ ℤ)
27 elfz 13431 . . . . . . . . . 10 (((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝑂) ∈ ℤ ∧ (𝑁 + 𝑃) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
2824, 25, 26, 27syl3an 1161 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
29283expb 1121 . . . . . . . 8 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3029ancoms 460 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
31303ad2antr1 1189 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3215, 23, 31mpbir2and 712 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
3332ex 414 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
3433an4s 659 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
354, 34biimtrid 241 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
363, 35sylbid 239 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5106  (class class class)co 7358  cr 11051   + caddc 11055  cle 11191  cz 12500  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-fz 13426
This theorem is referenced by:  fzadd2d  40438
  Copyright terms: Public domain W3C validator