MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzadd2 Structured version   Visualization version   GIF version

Theorem fzadd2 12936
Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzadd2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))

Proof of Theorem fzadd2
StepHypRef Expression
1 elfz1 12891 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
2 elfz1 12891 . . 3 ((𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐾 ∈ (𝑂...𝑃) ↔ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)))
31, 2bi2anan9 637 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃))))
4 an6 1441 . . 3 (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) ↔ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)))
5 zre 11979 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
6 zre 11979 . . . . . . . . . . 11 (𝑂 ∈ ℤ → 𝑂 ∈ ℝ)
75, 6anim12i 614 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ))
8 zre 11979 . . . . . . . . . . 11 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
9 zre 11979 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
108, 9anim12i 614 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ))
11 le2add 11116 . . . . . . . . . 10 (((𝑀 ∈ ℝ ∧ 𝑂 ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
127, 10, 11syl2an 597 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑀𝐽𝑂𝐾) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾)))
1312impr 457 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
14133adantr3 1167 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
1514adantlr 713 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝑀 + 𝑂) ≤ (𝐽 + 𝐾))
16 zre 11979 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 11979 . . . . . . . . . . 11 (𝑃 ∈ ℤ → 𝑃 ∈ ℝ)
1816, 17anim12i 614 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
19 le2add 11116 . . . . . . . . . 10 (((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) ∧ (𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2010, 18, 19syl2anr 598 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽𝑁𝐾𝑃) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃)))
2120impr 457 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
22213adantr2 1166 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
2322adantll 712 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))
24 zaddcl 12016 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 + 𝐾) ∈ ℤ)
25 zaddcl 12016 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) → (𝑀 + 𝑂) ∈ ℤ)
26 zaddcl 12016 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 + 𝑃) ∈ ℤ)
27 elfz 12892 . . . . . . . . . 10 (((𝐽 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝑂) ∈ ℤ ∧ (𝑁 + 𝑃) ∈ ℤ) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
2824, 25, 26, 27syl3an 1156 . . . . . . . . 9 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
29283expb 1116 . . . . . . . 8 (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3029ancoms 461 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
31303ad2antr1 1184 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → ((𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)) ↔ ((𝑀 + 𝑂) ≤ (𝐽 + 𝐾) ∧ (𝐽 + 𝐾) ≤ (𝑁 + 𝑃))))
3215, 23, 31mpbir2and 711 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) ∧ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃))) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃)))
3332ex 415 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑂 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
3433an4s 658 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐽𝑂𝐾) ∧ (𝐽𝑁𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
354, 34syl5bi 244 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝑂𝐾𝐾𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
363, 35sylbid 242 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑂 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → ((𝐽 ∈ (𝑀...𝑁) ∧ 𝐾 ∈ (𝑂...𝑃)) → (𝐽 + 𝐾) ∈ ((𝑀 + 𝑂)...(𝑁 + 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110   class class class wbr 5058  (class class class)co 7150  cr 10530   + caddc 10534  cle 10670  cz 11975  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-fz 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator