MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin Structured version   Visualization version   GIF version

Theorem ptbasin 23464
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝑌,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑋,𝑥,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ptbasin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . . 6 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 23459 . . . . 5 (𝑋𝐵 ↔ ∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)))
31elpt 23459 . . . . 5 (𝑌𝐵 ↔ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)))
42, 3anbi12i 628 . . . 4 ((𝑋𝐵𝑌𝐵) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
5 exdistrv 1955 . . . 4 (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
64, 5bitr4i 278 . . 3 ((𝑋𝐵𝑌𝐵) ↔ ∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
7 an4 656 . . . . 5 ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
8 an6 1447 . . . . . . . . 9 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
9 df-3an 1088 . . . . . . . . 9 (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
108, 9bitri 275 . . . . . . . 8 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
11 reeanv 3209 . . . . . . . . . . 11 (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ↔ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))
12 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑎𝑦) = (𝑎𝑘))
13 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑏𝑦) = (𝑏𝑘))
1412, 13ineq12d 4184 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑎𝑦) ∩ (𝑏𝑦)) = ((𝑎𝑘) ∩ (𝑏𝑘)))
1514cbvixpv 8888 . . . . . . . . . . . . . 14 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘))
16 simpl1l 1225 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐴𝑉)
17 unfi 9135 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) → (𝑐𝑑) ∈ Fin)
1817ad2antrl 728 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → (𝑐𝑑) ∈ Fin)
19 simpl1r 1226 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐹:𝐴⟶Top)
2019ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
21 simpl3l 1229 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦))
22 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
2312, 22eleq12d 2822 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑎𝑦) ∈ (𝐹𝑦) ↔ (𝑎𝑘) ∈ (𝐹𝑘)))
2423rspccva 3587 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
2521, 24sylan 580 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
26 simpl3r 1230 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))
2713, 22eleq12d 2822 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑏𝑦) ∈ (𝐹𝑦) ↔ (𝑏𝑘) ∈ (𝐹𝑘)))
2827rspccva 3587 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
2926, 28sylan 580 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
30 inopn 22786 . . . . . . . . . . . . . . . 16 (((𝐹𝑘) ∈ Top ∧ (𝑎𝑘) ∈ (𝐹𝑘) ∧ (𝑏𝑘) ∈ (𝐹𝑘)) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
3120, 25, 29, 30syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
32 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦))
33 ssun1 4141 . . . . . . . . . . . . . . . . . . . 20 𝑐 ⊆ (𝑐𝑑)
34 sscon 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐))
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐)
3635sseli 3942 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑐))
3722unieqd 4884 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
3812, 37eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑎𝑦) = (𝐹𝑦) ↔ (𝑎𝑘) = (𝐹𝑘)))
3938rspccva 3587 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑐)) → (𝑎𝑘) = (𝐹𝑘))
4032, 36, 39syl2an 596 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑎𝑘) = (𝐹𝑘))
41 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))
42 ssun2 4142 . . . . . . . . . . . . . . . . . . . 20 𝑑 ⊆ (𝑐𝑑)
43 sscon 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑)
4544sseli 3942 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑑))
4613, 37eqeq12d 2745 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑏𝑦) = (𝐹𝑦) ↔ (𝑏𝑘) = (𝐹𝑘)))
4746rspccva 3587 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑑)) → (𝑏𝑘) = (𝐹𝑘))
4841, 45, 47syl2an 596 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑏𝑘) = (𝐹𝑘))
4940, 48ineq12d 4184 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = ( (𝐹𝑘) ∩ (𝐹𝑘)))
50 inidm 4190 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ∩ (𝐹𝑘)) = (𝐹𝑘)
5149, 50eqtrdi 2780 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = (𝐹𝑘))
521, 16, 18, 31, 51elptr2 23461 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ 𝐵)
5315, 52eqeltrid 2832 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5453expr 456 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)) → ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5554rexlimdvva 3194 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5611, 55biimtrrid 243 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
57563expb 1120 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5857impr 454 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5910, 58sylan2b 594 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
60 ineq12 4178 . . . . . . . . 9 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦)))
61 ixpin 8896 . . . . . . . . 9 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦))
6260, 61eqtr4di 2782 . . . . . . . 8 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)))
6362eleq1d 2813 . . . . . . 7 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → ((𝑋𝑌) ∈ 𝐵X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
6459, 63syl5ibrcom 247 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) ∈ 𝐵))
6564expimpd 453 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
667, 65biimtrid 242 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
6766exlimdvv 1934 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
686, 67biimtrid 242 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ((𝑋𝐵𝑌𝐵) → (𝑋𝑌) ∈ 𝐵))
6968imp 406 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914   cuni 4871   Fn wfn 6506  wf 6507  cfv 6511  Xcixp 8870  Fincfn 8918  Topctop 22780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-ixp 8871  df-en 8919  df-fin 8922  df-top 22781
This theorem is referenced by:  ptbasin2  23465
  Copyright terms: Public domain W3C validator