MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin Structured version   Visualization version   GIF version

Theorem ptbasin 23063
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝑌,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑋,𝑥,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ptbasin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . . 6 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 23058 . . . . 5 (𝑋𝐵 ↔ ∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)))
31elpt 23058 . . . . 5 (𝑌𝐵 ↔ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)))
42, 3anbi12i 628 . . . 4 ((𝑋𝐵𝑌𝐵) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
5 exdistrv 1960 . . . 4 (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
64, 5bitr4i 278 . . 3 ((𝑋𝐵𝑌𝐵) ↔ ∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
7 an4 655 . . . . 5 ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
8 an6 1446 . . . . . . . . 9 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
9 df-3an 1090 . . . . . . . . 9 (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
108, 9bitri 275 . . . . . . . 8 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
11 reeanv 3227 . . . . . . . . . . 11 (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ↔ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))
12 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑎𝑦) = (𝑎𝑘))
13 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑏𝑦) = (𝑏𝑘))
1412, 13ineq12d 4212 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑎𝑦) ∩ (𝑏𝑦)) = ((𝑎𝑘) ∩ (𝑏𝑘)))
1514cbvixpv 8905 . . . . . . . . . . . . . 14 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘))
16 simpl1l 1225 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐴𝑉)
17 unfi 9168 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) → (𝑐𝑑) ∈ Fin)
1817ad2antrl 727 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → (𝑐𝑑) ∈ Fin)
19 simpl1r 1226 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐹:𝐴⟶Top)
2019ffvelcdmda 7082 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
21 simpl3l 1229 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦))
22 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
2312, 22eleq12d 2828 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑎𝑦) ∈ (𝐹𝑦) ↔ (𝑎𝑘) ∈ (𝐹𝑘)))
2423rspccva 3611 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
2521, 24sylan 581 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
26 simpl3r 1230 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))
2713, 22eleq12d 2828 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑏𝑦) ∈ (𝐹𝑦) ↔ (𝑏𝑘) ∈ (𝐹𝑘)))
2827rspccva 3611 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
2926, 28sylan 581 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
30 inopn 22383 . . . . . . . . . . . . . . . 16 (((𝐹𝑘) ∈ Top ∧ (𝑎𝑘) ∈ (𝐹𝑘) ∧ (𝑏𝑘) ∈ (𝐹𝑘)) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
3120, 25, 29, 30syl3anc 1372 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
32 simprrl 780 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦))
33 ssun1 4171 . . . . . . . . . . . . . . . . . . . 20 𝑐 ⊆ (𝑐𝑑)
34 sscon 4137 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐))
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐)
3635sseli 3977 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑐))
3722unieqd 4921 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
3812, 37eqeq12d 2749 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑎𝑦) = (𝐹𝑦) ↔ (𝑎𝑘) = (𝐹𝑘)))
3938rspccva 3611 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑐)) → (𝑎𝑘) = (𝐹𝑘))
4032, 36, 39syl2an 597 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑎𝑘) = (𝐹𝑘))
41 simprrr 781 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))
42 ssun2 4172 . . . . . . . . . . . . . . . . . . . 20 𝑑 ⊆ (𝑐𝑑)
43 sscon 4137 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑)
4544sseli 3977 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑑))
4613, 37eqeq12d 2749 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑏𝑦) = (𝐹𝑦) ↔ (𝑏𝑘) = (𝐹𝑘)))
4746rspccva 3611 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑑)) → (𝑏𝑘) = (𝐹𝑘))
4841, 45, 47syl2an 597 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑏𝑘) = (𝐹𝑘))
4940, 48ineq12d 4212 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = ( (𝐹𝑘) ∩ (𝐹𝑘)))
50 inidm 4217 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ∩ (𝐹𝑘)) = (𝐹𝑘)
5149, 50eqtrdi 2789 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = (𝐹𝑘))
521, 16, 18, 31, 51elptr2 23060 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ 𝐵)
5315, 52eqeltrid 2838 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5453expr 458 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)) → ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5554rexlimdvva 3212 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5611, 55biimtrrid 242 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
57563expb 1121 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5857impr 456 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5910, 58sylan2b 595 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
60 ineq12 4206 . . . . . . . . 9 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦)))
61 ixpin 8913 . . . . . . . . 9 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦))
6260, 61eqtr4di 2791 . . . . . . . 8 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)))
6362eleq1d 2819 . . . . . . 7 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → ((𝑋𝑌) ∈ 𝐵X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
6459, 63syl5ibrcom 246 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) ∈ 𝐵))
6564expimpd 455 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
667, 65biimtrid 241 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
6766exlimdvv 1938 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
686, 67biimtrid 241 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ((𝑋𝐵𝑌𝐵) → (𝑋𝑌) ∈ 𝐵))
6968imp 408 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wral 3062  wrex 3071  cdif 3944  cun 3945  cin 3946  wss 3947   cuni 4907   Fn wfn 6535  wf 6536  cfv 6540  Xcixp 8887  Fincfn 8935  Topctop 22377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7851  df-ixp 8888  df-en 8936  df-fin 8939  df-top 22378
This theorem is referenced by:  ptbasin2  23064
  Copyright terms: Public domain W3C validator