MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcl Structured version   Visualization version   GIF version

Theorem iimulcl 24833
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iimulcl ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))

Proof of Theorem iimulcl
StepHypRef Expression
1 remulcl 11153 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
213ad2antr1 1189 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
323ad2antl1 1186 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
4 mulge0 11696 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
543adantr3 1172 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
653adantl3 1169 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
7 an6 1447 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)))
8 1re 11174 . . . . . . . 8 1 ∈ ℝ
9 lemul12a 12040 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
108, 9mpanr2 704 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
118, 10mpanl2 701 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
1211an4s 660 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
13123impia 1117 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
147, 13sylbi 217 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
15 1t1e1 12343 . . . 4 (1 · 1) = 1
1614, 15breqtrdi 5148 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1)
173, 6, 163jca 1128 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
18 elicc01 13427 . . 3 (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1))
19 elicc01 13427 . . 3 (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1))
2018, 19anbi12i 628 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)))
21 elicc01 13427 . 2 ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
2217, 20, 213imtr4i 292 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-icc 13313
This theorem is referenced by:  iimulcn  24834  iimulcnOLD  24835  iistmd  33892  xrge0iifhom  33927  xrge0pluscn  33930
  Copyright terms: Public domain W3C validator