Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iimulcl | Structured version Visualization version GIF version |
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iimulcl | ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 10957 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
2 | 1 | 3ad2antr1 1187 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ) |
3 | 2 | 3ad2antl1 1184 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ) |
4 | mulge0 11493 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | |
5 | 4 | 3adantr3 1170 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵)) |
6 | 5 | 3adantl3 1167 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵)) |
7 | an6 1444 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1))) | |
8 | 1re 10976 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
9 | lemul12a 11833 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) | |
10 | 8, 9 | mpanr2 701 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
11 | 8, 10 | mpanl2 698 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
12 | 11 | an4s 657 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
13 | 12 | 3impia 1116 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1)) |
14 | 7, 13 | sylbi 216 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1)) |
15 | 1t1e1 12135 | . . . 4 ⊢ (1 · 1) = 1 | |
16 | 14, 15 | breqtrdi 5120 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1) |
17 | 3, 6, 16 | 3jca 1127 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1)) |
18 | elicc01 13197 | . . 3 ⊢ (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) | |
19 | elicc01 13197 | . . 3 ⊢ (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) | |
20 | 18, 19 | anbi12i 627 | . 2 ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1))) |
21 | elicc01 13197 | . 2 ⊢ ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1)) | |
22 | 17, 20, 21 | 3imtr4i 292 | 1 ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 · cmul 10877 ≤ cle 11011 [,]cicc 13081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-icc 13085 |
This theorem is referenced by: iimulcn 24099 iistmd 31848 xrge0iifhom 31883 xrge0pluscn 31886 |
Copyright terms: Public domain | W3C validator |