![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iimulcl | Structured version Visualization version GIF version |
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iimulcl | ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcl 11238 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
2 | 1 | 3ad2antr1 1187 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ) |
3 | 2 | 3ad2antl1 1184 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ) |
4 | mulge0 11779 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | |
5 | 4 | 3adantr3 1170 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵)) |
6 | 5 | 3adantl3 1167 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵)) |
7 | an6 1444 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1))) | |
8 | 1re 11259 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
9 | lemul12a 12123 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) | |
10 | 8, 9 | mpanr2 704 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
11 | 8, 10 | mpanl2 701 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
12 | 11 | an4s 660 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1))) |
13 | 12 | 3impia 1116 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1)) |
14 | 7, 13 | sylbi 217 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1)) |
15 | 1t1e1 12426 | . . . 4 ⊢ (1 · 1) = 1 | |
16 | 14, 15 | breqtrdi 5189 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1) |
17 | 3, 6, 16 | 3jca 1127 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1)) |
18 | elicc01 13503 | . . 3 ⊢ (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1)) | |
19 | elicc01 13503 | . . 3 ⊢ (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1)) | |
20 | 18, 19 | anbi12i 628 | . 2 ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ 1))) |
21 | elicc01 13503 | . 2 ⊢ ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1)) | |
22 | 17, 20, 21 | 3imtr4i 292 | 1 ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 ≤ cle 11294 [,]cicc 13387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-icc 13391 |
This theorem is referenced by: iimulcn 24981 iimulcnOLD 24982 iistmd 33863 xrge0iifhom 33898 xrge0pluscn 33901 |
Copyright terms: Public domain | W3C validator |