MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcl Structured version   Visualization version   GIF version

Theorem iimulcl 23540
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iimulcl ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))

Proof of Theorem iimulcl
StepHypRef Expression
1 remulcl 10611 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
213ad2antr1 1185 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
323ad2antl1 1182 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
4 mulge0 11147 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
543adantr3 1168 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
653adantl3 1165 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
7 an6 1442 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)))
8 1re 10630 . . . . . . . 8 1 ∈ ℝ
9 lemul12a 11487 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
108, 9mpanr2 703 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
118, 10mpanl2 700 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
1211an4s 659 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
13123impia 1114 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
147, 13sylbi 220 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
15 1t1e1 11787 . . . 4 (1 · 1) = 1
1614, 15breqtrdi 5083 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1)
173, 6, 163jca 1125 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
18 elicc01 12844 . . 3 (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1))
19 elicc01 12844 . . 3 (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1))
2018, 19anbi12i 629 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)))
21 elicc01 12844 . 2 ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
2217, 20, 213imtr4i 295 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wcel 2114   class class class wbr 5042  (class class class)co 7140  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cle 10665  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-icc 12733
This theorem is referenced by:  iimulcn  23541  iistmd  31219  xrge0iifhom  31254  xrge0pluscn  31257
  Copyright terms: Public domain W3C validator