MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcl Structured version   Visualization version   GIF version

Theorem iimulcl 24782
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iimulcl ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))

Proof of Theorem iimulcl
StepHypRef Expression
1 remulcl 11191 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
213ad2antr1 1185 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
323ad2antl1 1182 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
4 mulge0 11729 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
543adantr3 1168 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
653adantl3 1165 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
7 an6 1441 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)))
8 1re 11211 . . . . . . . 8 1 ∈ ℝ
9 lemul12a 12069 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
108, 9mpanr2 701 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
118, 10mpanl2 698 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
1211an4s 657 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
13123impia 1114 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
147, 13sylbi 216 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
15 1t1e1 12371 . . . 4 (1 · 1) = 1
1614, 15breqtrdi 5179 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1)
173, 6, 163jca 1125 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
18 elicc01 13440 . . 3 (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1))
19 elicc01 13440 . . 3 (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1))
2018, 19anbi12i 626 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)))
21 elicc01 13440 . 2 ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
2217, 20, 213imtr4i 292 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098   class class class wbr 5138  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107   · cmul 11111  cle 11246  [,]cicc 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-icc 13328
This theorem is referenced by:  iimulcn  24783  iimulcnOLD  24784  iistmd  33371  xrge0iifhom  33406  xrge0pluscn  33409
  Copyright terms: Public domain W3C validator