Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpconn Structured version   Visualization version   GIF version

Theorem txpconn 34160
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpconn ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)

Proof of Theorem txpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 34153 . . 3 (𝑅 ∈ PConn → 𝑅 ∈ Top)
2 pconntop 34153 . . 3 (𝑆 ∈ PConn → 𝑆 ∈ Top)
3 txtop 23054 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 597 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top)
5 an6 1446 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) ↔ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)))
6 eqid 2733 . . . . . . . . . . . 12 𝑅 = 𝑅
76pconncn 34152 . . . . . . . . . . 11 ((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) → ∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
8 eqid 2733 . . . . . . . . . . . 12 𝑆 = 𝑆
98pconncn 34152 . . . . . . . . . . 11 ((𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆) → ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤))
107, 9anim12i 614 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
115, 10sylbir 234 . . . . . . . . 9 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
12 reeanv 3227 . . . . . . . . 9 (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
1311, 12sylibr 233 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
14 iiuni 24378 . . . . . . . . . . . . 13 (0[,]1) = II
15 eqid 2733 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)
1614, 15txcnmpt 23109 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
1716ad2antrl 727 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
18 0elunit 13441 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
19 fveq2 6887 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑔𝑡) = (𝑔‘0))
20 fveq2 6887 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡) = (‘0))
2119, 20opeq12d 4879 . . . . . . . . . . . . . 14 (𝑡 = 0 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘0), (‘0)⟩)
22 opex 5462 . . . . . . . . . . . . . 14 ⟨(𝑔‘0), (‘0)⟩ ∈ V
2321, 15, 22fvmpt 6993 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩)
2418, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩
25 simprrl 780 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
2625simpld 496 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘0) = 𝑥)
27 simprrr 781 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((‘0) = 𝑦 ∧ (‘1) = 𝑤))
2827simpld 496 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘0) = 𝑦)
2926, 28opeq12d 4879 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘0), (‘0)⟩ = ⟨𝑥, 𝑦⟩)
3024, 29eqtrid 2785 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩)
31 1elunit 13442 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
32 fveq2 6887 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑔𝑡) = (𝑔‘1))
33 fveq2 6887 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑡) = (‘1))
3432, 33opeq12d 4879 . . . . . . . . . . . . . 14 (𝑡 = 1 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘1), (‘1)⟩)
35 opex 5462 . . . . . . . . . . . . . 14 ⟨(𝑔‘1), (‘1)⟩ ∈ V
3634, 15, 35fvmpt 6993 . . . . . . . . . . . . 13 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩)
3731, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩
3825simprd 497 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘1) = 𝑧)
3927simprd 497 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘1) = 𝑤)
4038, 39opeq12d 4879 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘1), (‘1)⟩ = ⟨𝑧, 𝑤⟩)
4137, 40eqtrid 2785 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)
42 fveq1 6886 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0))
4342eqeq1d 2735 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩))
44 fveq1 6886 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1))
4544eqeq1d 2735 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘1) = ⟨𝑧, 𝑤⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩))
4643, 45anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)))
4746rspcev 3611 . . . . . . . . . . 11 (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4817, 30, 41, 47syl12anc 836 . . . . . . . . . 10 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4948expr 458 . . . . . . . . 9 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ (𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5049rexlimdvva 3212 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5113, 50mpd 15 . . . . . . 7 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
52513expa 1119 . . . . . 6 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5352ralrimivva 3201 . . . . 5 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) → ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5453ralrimivva 3201 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
55 eqeq2 2745 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5655anbi2d 630 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5756rexbidv 3179 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5857ralxp 5838 . . . . . 6 (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
59 eqeq2 2745 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = ⟨𝑥, 𝑦⟩))
6059anbi1d 631 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6160rexbidv 3179 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
62612ralbidv 3219 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6358, 62bitrid 283 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6463ralxp 5838 . . . 4 (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
6554, 64sylibr 233 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
666, 8txuni 23077 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
671, 2, 66syl2an 597 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6867raleqdv 3326 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
6967, 68raleqbidv 3343 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
7065, 69mpbid 231 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
71 eqid 2733 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7271ispconn 34151 . 2 ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
734, 70, 72sylanbrc 584 1 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cop 4632   cuni 4906  cmpt 5229   × cxp 5672  cfv 6539  (class class class)co 7403  0cc0 11105  1c1 11106  [,]cicc 13322  Topctop 22376   Cn ccn 22709   ×t ctx 23045  IIcii 24372  PConncpconn 34147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-n0 12468  df-z 12554  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-icc 13326  df-seq 13962  df-exp 14023  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-topgen 17384  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-top 22377  df-topon 22394  df-bases 22430  df-cn 22712  df-tx 23047  df-ii 24374  df-pconn 34149
This theorem is referenced by:  txsconn  34169
  Copyright terms: Public domain W3C validator