Step | Hyp | Ref
| Expression |
1 | | pconntop 32900 |
. . 3
⊢ (𝑅 ∈ PConn → 𝑅 ∈ Top) |
2 | | pconntop 32900 |
. . 3
⊢ (𝑆 ∈ PConn → 𝑆 ∈ Top) |
3 | | txtop 22466 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
4 | 1, 2, 3 | syl2an 599 |
. 2
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top) |
5 | | an6 1447 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅
∧ 𝑧 ∈ ∪ 𝑅)
∧ (𝑆 ∈ PConn ∧
𝑦 ∈ ∪ 𝑆
∧ 𝑤 ∈ ∪ 𝑆))
↔ ((𝑅 ∈ PConn
∧ 𝑆 ∈ PConn) ∧
(𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))) |
6 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ ∪ 𝑅 =
∪ 𝑅 |
7 | 6 | pconncn 32899 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅
∧ 𝑧 ∈ ∪ 𝑅)
→ ∃𝑔 ∈ (II
Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧)) |
8 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ ∪ 𝑆 =
∪ 𝑆 |
9 | 8 | pconncn 32899 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ PConn ∧ 𝑦 ∈ ∪ 𝑆
∧ 𝑤 ∈ ∪ 𝑆)
→ ∃ℎ ∈ (II
Cn 𝑆)((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)) |
10 | 7, 9 | anim12i 616 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ PConn ∧ 𝑥 ∈ ∪ 𝑅
∧ 𝑧 ∈ ∪ 𝑅)
∧ (𝑆 ∈ PConn ∧
𝑦 ∈ ∪ 𝑆
∧ 𝑤 ∈ ∪ 𝑆))
→ (∃𝑔 ∈ (II
Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ℎ ∈ (II Cn 𝑆)((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤))) |
11 | 5, 10 | sylbir 238 |
. . . . . . . . 9
⊢ (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
→ (∃𝑔 ∈ (II
Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ℎ ∈ (II Cn 𝑆)((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤))) |
12 | | reeanv 3279 |
. . . . . . . . 9
⊢
(∃𝑔 ∈ (II
Cn 𝑅)∃ℎ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ℎ ∈ (II Cn 𝑆)((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤))) |
13 | 11, 12 | sylibr 237 |
. . . . . . . 8
⊢ (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
→ ∃𝑔 ∈ (II
Cn 𝑅)∃ℎ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤))) |
14 | | iiuni 23778 |
. . . . . . . . . . . . 13
⊢ (0[,]1) =
∪ II |
15 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (0[,]1) ↦
〈(𝑔‘𝑡), (ℎ‘𝑡)〉) = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) |
16 | 14, 15 | txcnmpt 22521 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (II Cn 𝑅) ∧ ℎ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) ∈ (II Cn (𝑅 ×t 𝑆))) |
17 | 16 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) ∈ (II Cn (𝑅 ×t 𝑆))) |
18 | | 0elunit 13057 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(0[,]1) |
19 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 0 → (𝑔‘𝑡) = (𝑔‘0)) |
20 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 0 → (ℎ‘𝑡) = (ℎ‘0)) |
21 | 19, 20 | opeq12d 4792 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 0 → 〈(𝑔‘𝑡), (ℎ‘𝑡)〉 = 〈(𝑔‘0), (ℎ‘0)〉) |
22 | | opex 5348 |
. . . . . . . . . . . . . 14
⊢
〈(𝑔‘0),
(ℎ‘0)〉 ∈
V |
23 | 21, 15, 22 | fvmpt 6818 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(0[,]1) → ((𝑡 ∈
(0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈(𝑔‘0), (ℎ‘0)〉) |
24 | 18, 23 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (0[,]1) ↦
〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈(𝑔‘0), (ℎ‘0)〉 |
25 | | simprrl 781 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧)) |
26 | 25 | simpld 498 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → (𝑔‘0) = 𝑥) |
27 | | simprrr 782 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)) |
28 | 27 | simpld 498 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → (ℎ‘0) = 𝑦) |
29 | 26, 28 | opeq12d 4792 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → 〈(𝑔‘0), (ℎ‘0)〉 = 〈𝑥, 𝑦〉) |
30 | 24, 29 | syl5eq 2790 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈𝑥, 𝑦〉) |
31 | | 1elunit 13058 |
. . . . . . . . . . . . 13
⊢ 1 ∈
(0[,]1) |
32 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 1 → (𝑔‘𝑡) = (𝑔‘1)) |
33 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 1 → (ℎ‘𝑡) = (ℎ‘1)) |
34 | 32, 33 | opeq12d 4792 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 1 → 〈(𝑔‘𝑡), (ℎ‘𝑡)〉 = 〈(𝑔‘1), (ℎ‘1)〉) |
35 | | opex 5348 |
. . . . . . . . . . . . . 14
⊢
〈(𝑔‘1),
(ℎ‘1)〉 ∈
V |
36 | 34, 15, 35 | fvmpt 6818 |
. . . . . . . . . . . . 13
⊢ (1 ∈
(0[,]1) → ((𝑡 ∈
(0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈(𝑔‘1), (ℎ‘1)〉) |
37 | 31, 36 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (0[,]1) ↦
〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈(𝑔‘1), (ℎ‘1)〉 |
38 | 25 | simprd 499 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → (𝑔‘1) = 𝑧) |
39 | 27 | simprd 499 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → (ℎ‘1) = 𝑤) |
40 | 38, 39 | opeq12d 4792 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → 〈(𝑔‘1), (ℎ‘1)〉 = 〈𝑧, 𝑤〉) |
41 | 37, 40 | syl5eq 2790 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈𝑧, 𝑤〉) |
42 | | fveq1 6716 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0)) |
43 | 42 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) → ((𝑓‘0) = 〈𝑥, 𝑦〉 ↔ ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈𝑥, 𝑦〉)) |
44 | | fveq1 6716 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1)) |
45 | 44 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) → ((𝑓‘1) = 〈𝑧, 𝑤〉 ↔ ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈𝑧, 𝑤〉)) |
46 | 43, 45 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉) → (((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉) ↔ (((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈𝑥, 𝑦〉 ∧ ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈𝑧, 𝑤〉))) |
47 | 46 | rspcev 3537 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ (0[,]1) ↦
〈(𝑔‘𝑡), (ℎ‘𝑡)〉) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘0) = 〈𝑥, 𝑦〉 ∧ ((𝑡 ∈ (0[,]1) ↦ 〈(𝑔‘𝑡), (ℎ‘𝑡)〉)‘1) = 〈𝑧, 𝑤〉)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
48 | 17, 30, 41, 47 | syl12anc 837 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ ((𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
49 | 48 | expr 460 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
∧ (𝑔 ∈ (II Cn
𝑅) ∧ ℎ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
50 | 49 | rexlimdvva 3213 |
. . . . . . . 8
⊢ (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
→ (∃𝑔 ∈ (II
Cn 𝑅)∃ℎ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((ℎ‘0) = 𝑦 ∧ (ℎ‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
51 | 13, 50 | mpd 15 |
. . . . . . 7
⊢ (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆)
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
→ ∃𝑓 ∈ (II
Cn (𝑅 ×t
𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
52 | 51 | 3expa 1120 |
. . . . . 6
⊢ ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆))
∧ (𝑧 ∈ ∪ 𝑅
∧ 𝑤 ∈ ∪ 𝑆))
→ ∃𝑓 ∈ (II
Cn (𝑅 ×t
𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
53 | 52 | ralrimivva 3112 |
. . . . 5
⊢ (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 ∈ ∪ 𝑅
∧ 𝑦 ∈ ∪ 𝑆))
→ ∀𝑧 ∈
∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
54 | 53 | ralrimivva 3112 |
. . . 4
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) →
∀𝑥 ∈ ∪ 𝑅∀𝑦 ∈ ∪ 𝑆∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
55 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑧, 𝑤〉 → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
56 | 55 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
57 | 56 | rexbidv 3216 |
. . . . . . 7
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
58 | 57 | ralxp 5710 |
. . . . . 6
⊢
(∀𝑣 ∈
(∪ 𝑅 × ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
59 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑥, 𝑦〉 → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = 〈𝑥, 𝑦〉)) |
60 | 59 | anbi1d 633 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉) ↔ ((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
61 | 60 | rexbidv 3216 |
. . . . . . 7
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
62 | 61 | 2ralbidv 3120 |
. . . . . 6
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉) ↔ ∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
63 | 58, 62 | syl5bb 286 |
. . . . 5
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (∀𝑣 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉))) |
64 | 63 | ralxp 5710 |
. . . 4
⊢
(∀𝑢 ∈
(∪ 𝑅 × ∪ 𝑆)∀𝑣 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 ∈ ∪ 𝑅∀𝑦 ∈ ∪ 𝑆∀𝑧 ∈ ∪ 𝑅∀𝑤 ∈ ∪ 𝑆∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 〈𝑥, 𝑦〉 ∧ (𝑓‘1) = 〈𝑧, 𝑤〉)) |
65 | 54, 64 | sylibr 237 |
. . 3
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) →
∀𝑢 ∈ (∪ 𝑅
× ∪ 𝑆)∀𝑣 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)) |
66 | 6, 8 | txuni 22489 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
67 | 1, 2, 66 | syl2an 599 |
. . . 4
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∪ 𝑅
× ∪ 𝑆) = ∪ (𝑅 ×t 𝑆)) |
68 | 67 | raleqdv 3325 |
. . . 4
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) →
(∀𝑣 ∈ (∪ 𝑅
× ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 ∈ ∪ (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))) |
69 | 67, 68 | raleqbidv 3313 |
. . 3
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) →
(∀𝑢 ∈ (∪ 𝑅
× ∪ 𝑆)∀𝑣 ∈ (∪ 𝑅 × ∪ 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 ∈ ∪ (𝑅 ×t 𝑆)∀𝑣 ∈ ∪ (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))) |
70 | 65, 69 | mpbid 235 |
. 2
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) →
∀𝑢 ∈ ∪ (𝑅
×t 𝑆)∀𝑣 ∈ ∪ (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)) |
71 | | eqid 2737 |
. . 3
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
72 | 71 | ispconn 32898 |
. 2
⊢ ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 ∈ ∪ (𝑅
×t 𝑆)∀𝑣 ∈ ∪ (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))) |
73 | 4, 70, 72 | sylanbrc 586 |
1
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn) |