Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpconn Structured version   Visualization version   GIF version

Theorem txpconn 35213
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpconn ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)

Proof of Theorem txpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 35206 . . 3 (𝑅 ∈ PConn → 𝑅 ∈ Top)
2 pconntop 35206 . . 3 (𝑆 ∈ PConn → 𝑆 ∈ Top)
3 txtop 23490 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top)
5 an6 1447 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) ↔ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)))
6 eqid 2729 . . . . . . . . . . . 12 𝑅 = 𝑅
76pconncn 35205 . . . . . . . . . . 11 ((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) → ∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
8 eqid 2729 . . . . . . . . . . . 12 𝑆 = 𝑆
98pconncn 35205 . . . . . . . . . . 11 ((𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆) → ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤))
107, 9anim12i 613 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
115, 10sylbir 235 . . . . . . . . 9 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
12 reeanv 3207 . . . . . . . . 9 (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
1311, 12sylibr 234 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
14 iiuni 24808 . . . . . . . . . . . . 13 (0[,]1) = II
15 eqid 2729 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)
1614, 15txcnmpt 23545 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
18 0elunit 13408 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
19 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑔𝑡) = (𝑔‘0))
20 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡) = (‘0))
2119, 20opeq12d 4841 . . . . . . . . . . . . . 14 (𝑡 = 0 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘0), (‘0)⟩)
22 opex 5419 . . . . . . . . . . . . . 14 ⟨(𝑔‘0), (‘0)⟩ ∈ V
2321, 15, 22fvmpt 6950 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩)
2418, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩
25 simprrl 780 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
2625simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘0) = 𝑥)
27 simprrr 781 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((‘0) = 𝑦 ∧ (‘1) = 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘0) = 𝑦)
2926, 28opeq12d 4841 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘0), (‘0)⟩ = ⟨𝑥, 𝑦⟩)
3024, 29eqtrid 2776 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩)
31 1elunit 13409 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
32 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑔𝑡) = (𝑔‘1))
33 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑡) = (‘1))
3432, 33opeq12d 4841 . . . . . . . . . . . . . 14 (𝑡 = 1 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘1), (‘1)⟩)
35 opex 5419 . . . . . . . . . . . . . 14 ⟨(𝑔‘1), (‘1)⟩ ∈ V
3634, 15, 35fvmpt 6950 . . . . . . . . . . . . 13 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩)
3731, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩
3825simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘1) = 𝑧)
3927simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘1) = 𝑤)
4038, 39opeq12d 4841 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘1), (‘1)⟩ = ⟨𝑧, 𝑤⟩)
4137, 40eqtrid 2776 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)
42 fveq1 6839 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0))
4342eqeq1d 2731 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩))
44 fveq1 6839 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1))
4544eqeq1d 2731 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘1) = ⟨𝑧, 𝑤⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩))
4643, 45anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)))
4746rspcev 3585 . . . . . . . . . . 11 (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4817, 30, 41, 47syl12anc 836 . . . . . . . . . 10 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4948expr 456 . . . . . . . . 9 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ (𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5049rexlimdvva 3192 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5113, 50mpd 15 . . . . . . 7 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
52513expa 1118 . . . . . 6 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5352ralrimivva 3178 . . . . 5 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) → ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5453ralrimivva 3178 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
55 eqeq2 2741 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5655anbi2d 630 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5756rexbidv 3157 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5857ralxp 5795 . . . . . 6 (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
59 eqeq2 2741 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = ⟨𝑥, 𝑦⟩))
6059anbi1d 631 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6160rexbidv 3157 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
62612ralbidv 3199 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6358, 62bitrid 283 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6463ralxp 5795 . . . 4 (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
6554, 64sylibr 234 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
666, 8txuni 23513 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
671, 2, 66syl2an 596 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6867raleqdv 3296 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
6967, 68raleqbidv 3316 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
7065, 69mpbid 232 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
71 eqid 2729 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7271ispconn 35204 . 2 ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
734, 70, 72sylanbrc 583 1 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  0cc0 11046  1c1 11047  [,]cicc 13287  Topctop 22814   Cn ccn 23145   ×t ctx 23481  IIcii 24802  PConncpconn 35200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-icc 13291  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-topgen 17383  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-top 22815  df-topon 22832  df-bases 22867  df-cn 23148  df-tx 23483  df-ii 24804  df-pconn 35202
This theorem is referenced by:  txsconn  35222
  Copyright terms: Public domain W3C validator