Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpconn Structured version   Visualization version   GIF version

Theorem txpconn 35226
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpconn ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)

Proof of Theorem txpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 35219 . . 3 (𝑅 ∈ PConn → 𝑅 ∈ Top)
2 pconntop 35219 . . 3 (𝑆 ∈ PConn → 𝑆 ∈ Top)
3 txtop 23463 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top)
5 an6 1447 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) ↔ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)))
6 eqid 2730 . . . . . . . . . . . 12 𝑅 = 𝑅
76pconncn 35218 . . . . . . . . . . 11 ((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) → ∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
8 eqid 2730 . . . . . . . . . . . 12 𝑆 = 𝑆
98pconncn 35218 . . . . . . . . . . 11 ((𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆) → ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤))
107, 9anim12i 613 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
115, 10sylbir 235 . . . . . . . . 9 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
12 reeanv 3210 . . . . . . . . 9 (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
1311, 12sylibr 234 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
14 iiuni 24781 . . . . . . . . . . . . 13 (0[,]1) = II
15 eqid 2730 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)
1614, 15txcnmpt 23518 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
18 0elunit 13437 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
19 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑔𝑡) = (𝑔‘0))
20 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡) = (‘0))
2119, 20opeq12d 4848 . . . . . . . . . . . . . 14 (𝑡 = 0 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘0), (‘0)⟩)
22 opex 5427 . . . . . . . . . . . . . 14 ⟨(𝑔‘0), (‘0)⟩ ∈ V
2321, 15, 22fvmpt 6971 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩)
2418, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩
25 simprrl 780 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
2625simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘0) = 𝑥)
27 simprrr 781 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((‘0) = 𝑦 ∧ (‘1) = 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘0) = 𝑦)
2926, 28opeq12d 4848 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘0), (‘0)⟩ = ⟨𝑥, 𝑦⟩)
3024, 29eqtrid 2777 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩)
31 1elunit 13438 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
32 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑔𝑡) = (𝑔‘1))
33 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑡) = (‘1))
3432, 33opeq12d 4848 . . . . . . . . . . . . . 14 (𝑡 = 1 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘1), (‘1)⟩)
35 opex 5427 . . . . . . . . . . . . . 14 ⟨(𝑔‘1), (‘1)⟩ ∈ V
3634, 15, 35fvmpt 6971 . . . . . . . . . . . . 13 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩)
3731, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩
3825simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘1) = 𝑧)
3927simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘1) = 𝑤)
4038, 39opeq12d 4848 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘1), (‘1)⟩ = ⟨𝑧, 𝑤⟩)
4137, 40eqtrid 2777 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)
42 fveq1 6860 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0))
4342eqeq1d 2732 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩))
44 fveq1 6860 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1))
4544eqeq1d 2732 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘1) = ⟨𝑧, 𝑤⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩))
4643, 45anbi12d 632 . . . . . . . . . . . 12 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)))
4746rspcev 3591 . . . . . . . . . . 11 (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4817, 30, 41, 47syl12anc 836 . . . . . . . . . 10 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4948expr 456 . . . . . . . . 9 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ (𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5049rexlimdvva 3195 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5113, 50mpd 15 . . . . . . 7 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
52513expa 1118 . . . . . 6 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5352ralrimivva 3181 . . . . 5 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) → ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5453ralrimivva 3181 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
55 eqeq2 2742 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5655anbi2d 630 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5756rexbidv 3158 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5857ralxp 5808 . . . . . 6 (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
59 eqeq2 2742 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = ⟨𝑥, 𝑦⟩))
6059anbi1d 631 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6160rexbidv 3158 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
62612ralbidv 3202 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6358, 62bitrid 283 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6463ralxp 5808 . . . 4 (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
6554, 64sylibr 234 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
666, 8txuni 23486 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
671, 2, 66syl2an 596 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6867raleqdv 3301 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
6967, 68raleqbidv 3321 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
7065, 69mpbid 232 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
71 eqid 2730 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7271ispconn 35217 . 2 ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
734, 70, 72sylanbrc 583 1 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cop 4598   cuni 4874  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  [,]cicc 13316  Topctop 22787   Cn ccn 23118   ×t ctx 23454  IIcii 24775  PConncpconn 35213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-tx 23456  df-ii 24777  df-pconn 35215
This theorem is referenced by:  txsconn  35235
  Copyright terms: Public domain W3C validator