Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpconn Structured version   Visualization version   GIF version

Theorem txpconn 32907
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpconn ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)

Proof of Theorem txpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 32900 . . 3 (𝑅 ∈ PConn → 𝑅 ∈ Top)
2 pconntop 32900 . . 3 (𝑆 ∈ PConn → 𝑆 ∈ Top)
3 txtop 22466 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 599 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top)
5 an6 1447 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) ↔ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)))
6 eqid 2737 . . . . . . . . . . . 12 𝑅 = 𝑅
76pconncn 32899 . . . . . . . . . . 11 ((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) → ∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
8 eqid 2737 . . . . . . . . . . . 12 𝑆 = 𝑆
98pconncn 32899 . . . . . . . . . . 11 ((𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆) → ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤))
107, 9anim12i 616 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
115, 10sylbir 238 . . . . . . . . 9 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
12 reeanv 3279 . . . . . . . . 9 (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
1311, 12sylibr 237 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
14 iiuni 23778 . . . . . . . . . . . . 13 (0[,]1) = II
15 eqid 2737 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)
1614, 15txcnmpt 22521 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
1716ad2antrl 728 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
18 0elunit 13057 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
19 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑔𝑡) = (𝑔‘0))
20 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡) = (‘0))
2119, 20opeq12d 4792 . . . . . . . . . . . . . 14 (𝑡 = 0 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘0), (‘0)⟩)
22 opex 5348 . . . . . . . . . . . . . 14 ⟨(𝑔‘0), (‘0)⟩ ∈ V
2321, 15, 22fvmpt 6818 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩)
2418, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩
25 simprrl 781 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
2625simpld 498 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘0) = 𝑥)
27 simprrr 782 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((‘0) = 𝑦 ∧ (‘1) = 𝑤))
2827simpld 498 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘0) = 𝑦)
2926, 28opeq12d 4792 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘0), (‘0)⟩ = ⟨𝑥, 𝑦⟩)
3024, 29syl5eq 2790 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩)
31 1elunit 13058 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
32 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑔𝑡) = (𝑔‘1))
33 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑡) = (‘1))
3432, 33opeq12d 4792 . . . . . . . . . . . . . 14 (𝑡 = 1 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘1), (‘1)⟩)
35 opex 5348 . . . . . . . . . . . . . 14 ⟨(𝑔‘1), (‘1)⟩ ∈ V
3634, 15, 35fvmpt 6818 . . . . . . . . . . . . 13 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩)
3731, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩
3825simprd 499 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘1) = 𝑧)
3927simprd 499 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘1) = 𝑤)
4038, 39opeq12d 4792 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘1), (‘1)⟩ = ⟨𝑧, 𝑤⟩)
4137, 40syl5eq 2790 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)
42 fveq1 6716 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0))
4342eqeq1d 2739 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩))
44 fveq1 6716 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1))
4544eqeq1d 2739 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘1) = ⟨𝑧, 𝑤⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩))
4643, 45anbi12d 634 . . . . . . . . . . . 12 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)))
4746rspcev 3537 . . . . . . . . . . 11 (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4817, 30, 41, 47syl12anc 837 . . . . . . . . . 10 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4948expr 460 . . . . . . . . 9 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ (𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5049rexlimdvva 3213 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5113, 50mpd 15 . . . . . . 7 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
52513expa 1120 . . . . . 6 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5352ralrimivva 3112 . . . . 5 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) → ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5453ralrimivva 3112 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
55 eqeq2 2749 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5655anbi2d 632 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5756rexbidv 3216 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5857ralxp 5710 . . . . . 6 (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
59 eqeq2 2749 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = ⟨𝑥, 𝑦⟩))
6059anbi1d 633 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6160rexbidv 3216 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
62612ralbidv 3120 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6358, 62syl5bb 286 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6463ralxp 5710 . . . 4 (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
6554, 64sylibr 237 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
666, 8txuni 22489 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
671, 2, 66syl2an 599 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6867raleqdv 3325 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
6967, 68raleqbidv 3313 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
7065, 69mpbid 235 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
71 eqid 2737 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7271ispconn 32898 . 2 ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
734, 70, 72sylanbrc 586 1 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cop 4547   cuni 4819  cmpt 5135   × cxp 5549  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730  [,]cicc 12938  Topctop 21790   Cn ccn 22121   ×t ctx 22457  IIcii 23772  PConncpconn 32894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cn 22124  df-tx 22459  df-ii 23774  df-pconn 32896
This theorem is referenced by:  txsconn  32916
  Copyright terms: Public domain W3C validator