Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpconn Structured version   Visualization version   GIF version

Theorem txpconn 33094
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpconn ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)

Proof of Theorem txpconn
Dummy variables 𝑓 𝑥 𝑦 𝑔 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconntop 33087 . . 3 (𝑅 ∈ PConn → 𝑅 ∈ Top)
2 pconntop 33087 . . 3 (𝑆 ∈ PConn → 𝑆 ∈ Top)
3 txtop 22628 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 595 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ Top)
5 an6 1443 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) ↔ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)))
6 eqid 2738 . . . . . . . . . . . 12 𝑅 = 𝑅
76pconncn 33086 . . . . . . . . . . 11 ((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) → ∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
8 eqid 2738 . . . . . . . . . . . 12 𝑆 = 𝑆
98pconncn 33086 . . . . . . . . . . 11 ((𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆) → ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤))
107, 9anim12i 612 . . . . . . . . . 10 (((𝑅 ∈ PConn ∧ 𝑥 𝑅𝑧 𝑅) ∧ (𝑆 ∈ PConn ∧ 𝑦 𝑆𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
115, 10sylbir 234 . . . . . . . . 9 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
12 reeanv 3292 . . . . . . . . 9 (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) ↔ (∃𝑔 ∈ (II Cn 𝑅)((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ∃ ∈ (II Cn 𝑆)((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
1311, 12sylibr 233 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))
14 iiuni 23950 . . . . . . . . . . . . 13 (0[,]1) = II
15 eqid 2738 . . . . . . . . . . . . 13 (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)
1614, 15txcnmpt 22683 . . . . . . . . . . . 12 ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
1716ad2antrl 724 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)))
18 0elunit 13130 . . . . . . . . . . . . 13 0 ∈ (0[,]1)
19 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑔𝑡) = (𝑔‘0))
20 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = 0 → (𝑡) = (‘0))
2119, 20opeq12d 4809 . . . . . . . . . . . . . 14 (𝑡 = 0 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘0), (‘0)⟩)
22 opex 5373 . . . . . . . . . . . . . 14 ⟨(𝑔‘0), (‘0)⟩ ∈ V
2321, 15, 22fvmpt 6857 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩)
2418, 23ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨(𝑔‘0), (‘0)⟩
25 simprrl 777 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧))
2625simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘0) = 𝑥)
27 simprrr 778 . . . . . . . . . . . . . 14 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((‘0) = 𝑦 ∧ (‘1) = 𝑤))
2827simpld 494 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘0) = 𝑦)
2926, 28opeq12d 4809 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘0), (‘0)⟩ = ⟨𝑥, 𝑦⟩)
3024, 29syl5eq 2791 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩)
31 1elunit 13131 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
32 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑔𝑡) = (𝑔‘1))
33 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑡 = 1 → (𝑡) = (‘1))
3432, 33opeq12d 4809 . . . . . . . . . . . . . 14 (𝑡 = 1 → ⟨(𝑔𝑡), (𝑡)⟩ = ⟨(𝑔‘1), (‘1)⟩)
35 opex 5373 . . . . . . . . . . . . . 14 ⟨(𝑔‘1), (‘1)⟩ ∈ V
3634, 15, 35fvmpt 6857 . . . . . . . . . . . . 13 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩)
3731, 36ax-mp 5 . . . . . . . . . . . 12 ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨(𝑔‘1), (‘1)⟩
3825simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (𝑔‘1) = 𝑧)
3927simprd 495 . . . . . . . . . . . . 13 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → (‘1) = 𝑤)
4038, 39opeq12d 4809 . . . . . . . . . . . 12 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ⟨(𝑔‘1), (‘1)⟩ = ⟨𝑧, 𝑤⟩)
4137, 40syl5eq 2791 . . . . . . . . . . 11 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)
42 fveq1 6755 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘0) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0))
4342eqeq1d 2740 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩))
44 fveq1 6755 . . . . . . . . . . . . . 14 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (𝑓‘1) = ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1))
4544eqeq1d 2740 . . . . . . . . . . . . 13 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → ((𝑓‘1) = ⟨𝑧, 𝑤⟩ ↔ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩))
4643, 45anbi12d 630 . . . . . . . . . . . 12 (𝑓 = (𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) → (((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)))
4746rspcev 3552 . . . . . . . . . . 11 (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩) ∈ (II Cn (𝑅 ×t 𝑆)) ∧ (((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘0) = ⟨𝑥, 𝑦⟩ ∧ ((𝑡 ∈ (0[,]1) ↦ ⟨(𝑔𝑡), (𝑡)⟩)‘1) = ⟨𝑧, 𝑤⟩)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4817, 30, 41, 47syl12anc 833 . . . . . . . . . 10 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ ((𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆)) ∧ (((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)))) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
4948expr 456 . . . . . . . . 9 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) ∧ (𝑔 ∈ (II Cn 𝑅) ∧ ∈ (II Cn 𝑆))) → ((((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5049rexlimdvva 3222 . . . . . . . 8 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → (∃𝑔 ∈ (II Cn 𝑅)∃ ∈ (II Cn 𝑆)(((𝑔‘0) = 𝑥 ∧ (𝑔‘1) = 𝑧) ∧ ((‘0) = 𝑦 ∧ (‘1) = 𝑤)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5113, 50mpd 15 . . . . . . 7 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
52513expa 1116 . . . . . 6 ((((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) ∧ (𝑧 𝑅𝑤 𝑆)) → ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5352ralrimivva 3114 . . . . 5 (((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) ∧ (𝑥 𝑅𝑦 𝑆)) → ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5453ralrimivva 3114 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
55 eqeq2 2750 . . . . . . . . 9 (𝑣 = ⟨𝑧, 𝑤⟩ → ((𝑓‘1) = 𝑣 ↔ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
5655anbi2d 628 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5756rexbidv 3225 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
5857ralxp 5739 . . . . . 6 (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
59 eqeq2 2750 . . . . . . . . 9 (𝑢 = ⟨𝑥, 𝑦⟩ → ((𝑓‘0) = 𝑢 ↔ (𝑓‘0) = ⟨𝑥, 𝑦⟩))
6059anbi1d 629 . . . . . . . 8 (𝑢 = ⟨𝑥, 𝑦⟩ → (((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6160rexbidv 3225 . . . . . . 7 (𝑢 = ⟨𝑥, 𝑦⟩ → (∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
62612ralbidv 3122 . . . . . 6 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6358, 62syl5bb 282 . . . . 5 (𝑢 = ⟨𝑥, 𝑦⟩ → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩)))
6463ralxp 5739 . . . 4 (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑥 𝑅𝑦 𝑆𝑧 𝑅𝑤 𝑆𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = ⟨𝑥, 𝑦⟩ ∧ (𝑓‘1) = ⟨𝑧, 𝑤⟩))
6554, 64sylibr 233 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
666, 8txuni 22651 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
671, 2, 66syl2an 595 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
6867raleqdv 3339 . . . 4 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
6967, 68raleqbidv 3327 . . 3 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (∀𝑢 ∈ ( 𝑅 × 𝑆)∀𝑣 ∈ ( 𝑅 × 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣) ↔ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
7065, 69mpbid 231 . 2 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣))
71 eqid 2738 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
7271ispconn 33085 . 2 ((𝑅 ×t 𝑆) ∈ PConn ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑢 (𝑅 ×t 𝑆)∀𝑣 (𝑅 ×t 𝑆)∃𝑓 ∈ (II Cn (𝑅 ×t 𝑆))((𝑓‘0) = 𝑢 ∧ (𝑓‘1) = 𝑣)))
734, 70, 72sylanbrc 582 1 ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  [,]cicc 13011  Topctop 21950   Cn ccn 22283   ×t ctx 22619  IIcii 23944  PConncpconn 33081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621  df-ii 23946  df-pconn 33083
This theorem is referenced by:  txsconn  33103
  Copyright terms: Public domain W3C validator